Кому-то необходимо рассчитать мощность двигательного агрегата, чтобы вычислить автомобильный налог. Некоторым важно самостоятельно произвести расчет мощности двигателя компрессора. Для кого-то важно точно знать мощности машины, чтобы сверить ее с той, что была заявлена. В целом расчет мощности и выбор двигателя – два неразделимых процесса.
Это не единственные причины, по которым автолюбители пытаются самостоятельно рассчитать мощности двигателей своих авто. Это довольно сложно сделать без наличия необходимых формул для расчета. Именно они будут приведены в этой статье, чтобы каждый автомобилист мог сам посчитать, сколько же составляет реальная мощность двигателя его авто.
Вам будет интересно:Пополняем словарный запас: постоялец — это…
Введение
Существует как минимум четыре распространенных способа расчета мощности двигателя внутреннего сгорания. В данных методах применяются следующие параметры двигательного агрегата:
- Обороты.
- Объем.
- Крутящий момент.
- Эффективное давление внутри камеры сгорания.
- качество топливной смеси;
- полнота сгорания;
- топливные потери.
Для вычислений необходимо знать и вес автомобиля, а также время разгона до 100 км/ч.
Каждая из далее приведенных формул расчета мощности двигателя имеет некоторую погрешность и не может дать на 100% точный результат. Это всегда стоит учитывать при анализе полученных данных.
Если рассчитать мощность по всем формулам, которые будут описаны в статье, можно узнать среднее значение реальной мощности мотора, а расхождение с действительным результатом составит не более 10%.
Вам будет интересно:Как находить произведение матриц. Умножение матриц. Скалярное произведение матриц. Произведение трех матриц
Если не учитывать различные научные тонкости, связанные с определением технических понятий, то можно сказать, что мощность – это энергия, вырабатываемая двигательным агрегатом и преобразуемая в крутящий момент на валу. При этом мощность – величина непостоянная, а ее максимальное значение достигается при определенной скорости вращения вала (указывается в паспортных данных).
В современных двигателях внутреннего сгорания максимальная мощность достигается при 5,5-6,6 тысяч оборотов в минуту. Она наблюдается при наибольшем среднем эффективном значении давления в цилиндрах. Величина этого давления зависит от следующих параметров:
Мощность, как физическая величина, измеряется в Ваттах, а в автомобильной отрасли она измеряется в лошадиных силах. Расчеты, описываемые в методах далее, будут давать результаты в киловаттах, затем их понадобится перевести в лошадиные силы с помощью специального калькулятора-конвертера.
Расчет мощности двигателя: методики и необходимые формулы
Мощность движка — это энергия, которая образуется внутри ДВС во время его работы. Этот показатель является ключевым для любого автомобиля, а при выборе машины на него ориентируется многие автомобилисты. Определить его можно различными способами. Перечислим основные методики:
- Через обороты и крутящий момент.
- По объему ДВС.
- По расходу воздуха.
- По массе и времени разгона до 100 километров в час.
- По производительности впрыскивающих форсунок.
Главной единицей измерения мощности являются ватты, однако иногда этот показатель выражают с помощью лошадиных сил. Между этими единицами измерения есть простая зависимость, поэтому при необходимости, лошадиные силы, можно легко преобразовать в ватты (и наоборот).
В нашей статье, мы рассмотрим основные формулы определения мощности, а также узнаем, как перевести лошадиные силы в ватты.
Мощность через крутящий момент
Вам будет интересно:Обомлеть — это что значит? Определение и синонимы
Один из способов вычисления мощности является определение зависимости крутящего момента мотора от количества оборотов.
Любой момент в физике – произведение силы на плечо ее приложения. Крутящий момент – произведение силы, которую может развивать двигатель для преодоления сопротивления нагрузки, на плечо ее приложения. Именно данный параметр определяет, насколько быстро мотор достигает своей максимальной мощности.
Крутящий момент можно определить, как отношение произведения рабочего объема на среднее эффективное давление в камере сгорания к 0,12566 (константа):
- M = (Vрабочий * Pэффективное)/0,12566, где Vрабочий – рабочий объем мотора [л], Pэффективное – эффективное давление в камере сгорания [бар].
Обороты двигателя характеризуют скорость вращения коленвала.
Используя величины крутящего момента и оборотов двигателя, можно использовать следующую формулу расчета мощности двигателя:
- P = (M * n)/9549, где M – крутящий момент [Нм], n – скорость вращения вала [об/мин], 9549 – коэффициент пропорциональности.
Рассчитанная мощность измеряется в киловаттах. Чтобы перевести вычисленную величину в лошадиные силы, нужно результат умножить на коэффициент пропорциональности 1,36.
Этот способ вычисления состоит в использовании всего двух элементарных формул, поэтому считается одним из самых простых. Правда, можно поступить еще проще и воспользоваться онлайн-калькулятором, в который необходимо внести определенные данные об автомобиле и его двигательном агрегате.
Стоит заметить, что данная формула расчета мощности двигателя позволяет рассчитать лишь ту мощность, которая получается на выходе двигателя, а не ту, которая реально доход до колес автомобиля. В чем разница? Пока мощность (если представить ее как поток) доходит до колес, она испытывает потери в раздаточной коробке, например. Играют весомую роль и побочные потребители вроде кондиционера или генератора. Нельзя не упомянуть потери на преодоление сопротивления подъему, качению, а также аэродинамическому сопротивлению.
Частично этот недостаток компенсируется использованием других расчетных формул.
Расчет по лошадиным силам
Если Вам известно количество лошадиных сил Вашего движка, то можно легко узнать и вычислить мощность двигателя. Для подсчета используется простая формула:
М = М(ЛС) x 0,735
Расшифровывается она так:
- М(ЛС) — мощность двигателя внутреннего сгорания, выраженная в лошадиных силах.
- 0,735 — это поправочный коэффициент, на который необходимо умножить количество Ваших «лошадок».
Мощность через объем двигателя
Не всегда есть возможность определить крутящий момент двигателя. Иногда автовладельцы и вовсе не знают значения этого параметра. В таком случае мощность двигательного агрегата можно узнать при помощи объема мотора.
Для этого понадобится умножить объем агрегата на частоту вращения коленвала, а также на среднее эффективное давление. Полученную величину необходимо разделить на 120:
- P = (V * n * Pэффективное)/120 где V – объем двигателя [см3], n – скорость вращения коленвала [об/мин], Pэффективное – среднее эффективное давление [МПА], 120 – константа, коэффициент пропорциональности.
Так производится расчет мощности двигателя автомобиля с помощью объема агрегата.
Чаще всего значение Pэффективное в бензиновых двигателях стандартного образца варьируется от 0,82 МПа до 0,85 МПа, в форсированных моторах – 0,9 МПа, а в дизельных агрегатах значение давления находится в промежутке от 0,9 МПа до 2,5 МПа.
Вам будет интересно:»Неожиданный» — это какой? Значение слова
При использовании данной формулы для расчета реальной мощности мотора, чтобы перевести кВт в л. с., необходимо разделить полученную величину на коэффициент, равный 0,735.
Данный метод расчета также далеко не самый сложный и занимает минимум времени и усилий.
С помощью этого метода можно произвести расчет мощности двигателя насоса.
ГЛАВА 3. ДЕЙСТВИТЕЛЬНЫЕ ЦИКЛЫ, МОЩНОСТЬ, КПД ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ
Четырехтактный двигатель. Теоретические индикаторные диаграммы были построены нами без учета потерь, которые всегда бывают при работе двигателя. Так, например, при всасывании карбюратор, всасывающий клапан и всасывающий патрубок оказывают гидравлическое сопротивление движению газов и тем большее, чем больше скорость газа во всасывающей системе. По этой причине действительное давление всасывания всегда получается ниже атмосферного и зависит от длины и проходного сечения трубы, плавности переходов, точности изготовления клапанов и клапанных седел, сопротивлений в карбюраторе и обтекаемой формы деталей, встречающихся на пути потока. Это учитывается пунктирной кривой
а1;b1;
на диаграмме рис. 11, т. е. заряд поступает в цилиндр пониженной плотности. Понижению его плотности способствует также и нагрев смеси от горячих деталей.
Таким образом, весовое количество заряда в цилиндре понижается, что учитывается коэффициентом наполнения
ηv . Коэффициент наполнения показывает, какое по весу количество свежего заряда заполнило цилиндр по сравнению с тем, которое могло бы вместиться, если бы температура и давление заряда были равны атмосферным условиям.
Для современных быстроходных легких двигателей коэффициент наполнения при полном открытии дросселя находится в пределах 0,8—0,9, т. е. цилиндр двигателя наполняется только на 80—90% от полного объема при нормальных условиях(1).
На ηv в известной степени влияет избыток топлива, понижающий температуру всасывания и. сгорания, а вместе с ними и температуру цилиндра, поршня и головки.
Смесь, содержащая в себе больше топлива, чем требуется для нормальной смеси, называется богатой. Однако работа на богатой смеси неэкономична, так как часть топлива из-за недостатка воздуха сгорает не полностью и уходит наружу с отработанными газами в виде сажи, а отчасти окиси углерода СО.
Влияет на и род топлива. Каждый вид топлива имеет свою скрытую теплоту парообразования, от которой зависят температура и количество засасываемой смеси. Например, применение в качестве топлива спирта повышает ηv на 5—10% по сравнению с бензином.
Так как количество выделенной тепловой энергии, а следовательно, и мощность двигателя находятся в прямой зависимости от весового заряда цилиндра, то в задачу водителя входит использовать все факторы, способствующие увеличению ηv.
Рассмотрим влияние фаз газораспределения на наполнение цилиндра.
В быстроходных двигателях, когда циклы следуют друг за другом очень быстро, всасываемая смесь по трубопроводу движется со скоростью примерно 100 м/сек. С закрытием впускного клапана, в силу инерции движущихся газов, к началу впуска следующего цикла перед клапаном образуется некоторое давление (поджатие) смеси, превосходящее атмосферное. В этот момент снова начнет открываться впускной клапан и поджатая смесь с силой устремляется в цилиндр; таким образом можно получить лучшее наполнение цилиндра. Поэтому чаще всего в зависимости от быстроходности двигателя начало впуска производят с опережением от 8 до 40°, а в гоночных машинах доводят его до 75° и выше. Такое опережение впуска обычно устанавливается опытным путем. Закрытие впускного клапана также осуществляют не в НМТ, как в теоретическом цикле, а позднее, примерно на 45—70°, давая больше времени на заполнение цилиндра. Таким способом период заполнения удлиняется от 220 до 290° по повороту коленчатого вала вместо 180° теоретического цикла, что увеличивает коэффициент наполнения ηv .
Следующим фактором, влияющим на наполнение цилиндра, являются остаточные газы от предыдущего цикла. В четырехтактных двигателях сгоревшие газы частично задерживаются в так называемом вредном пространстве, т. е. в камере сжатия Vc .
Так как такт сжатия следует непосредственно за тактом всасывания, то фактически сжатие смеси начинается не в НМТ, а с запозданием, равным концу выпуска, что дает некоторую потерю части хода. Кроме того, на протяжении хода сжатия мы имеем дополнительную потерю тепла как на нагрев стенки и головки цилиндра, так и днища поршня, что отражается понижением давления сжатия (пунктирная кривая ac1; на диаграмме рис. 11).
Сжатие смеси необходимо для того, чтобы ускорить процесс ее сгорания и получить большую силу давления на поршень как при вспышке, так и во время рабочего хода. Увеличение рабочего давления повышает мощность двигателя. Чем выше степень сжатия в двигателе, тем больше мощность его, тем меньше удельный расход топлива, т. е. расход на 1 л. с. ч., тем выше термический коэффициент полезного действия двигателя. Однако увеличение степени сжатия возможно только до определенного предела, зависящего в основном от температуры самовоспламенения рабочей смеси и от возникновения детонации(2) в двигателе. Как самовоспламенение, так и детонация нежелательны: они нарушают нормальную работу двигателя. У современных быстроходных двигателей степень сжатия достигает обычно 5—8, а давление конца сжатия порядка 7,5—11 кг/см². При этом температура достигает 270—350°.
Горение смеси в действительности не происходит мгновенно, а требует от 1/300 до 1/600 доли секунды, поэтому воспламенение смеси производят с некоторым опережением c1.
Во время расширения, вследствие большой разности температур между стенкой и газами, часть тепла теряется в стенки и давление понижается. Все переходы давлений от такта сжатия к такту расширения происходят плавно, без резких пиков и всецело зависят от величины опережения зажигания (рис. 11, пунктирная кривая c1c2z1e1).
Величина снижения давлений за ход расширения зависит от интенсивности охлаждения стенок цилиндра, его диаметра и числа оборотов; чем больше число оборотов и больше диаметр цилиндра, тем выше линия давления расширения на индикаторной диаграмме. Не доходя примерно 50—70° до НМТ по ходу расширения для лучшей очистки цилиндра, производят опережение выпуска: выпускной клапан открывается, отработанные газы с критической скоростью (скоростью звука) вытекают из цилиндра и давление резко падает, что изображено на диаграмме линией е1a1.
Выпуск отработанных газов всегда происходит при повышенном давлении порядка 1,1—1,2 см², а температура газов в конце выпуска достигает примерно 500—600°. Закрытие выпускного клапана для лучшей очистки цилиндра от сгоревших газов производят также не в ВМТ, как в теоретическом цикле, а значительно позже. Для быстроходных двигателей запоздание выпуска доводят до 30—40°, а для гоночных до 55° и выше. Полезно здесь отметить, что вблизи ВМТ клапан впуска и клапан выпуска оказываются некоторое время одновременно открытыми, так как впускной клапан открывается до прихода в ВМТ, а выпускной закрывается после ВМТ. Такое перекрытие нередко достигает в моторах величины 60°, доходя в гоночных моторах до 100—120°.
Подобные диаграммы можно получить и непосредственно с работающего двигателя при помощи прибора, называемого индикатором
, откуда эти диаграммы и получили свое название
индикаторных
.
Индикаторные диаграммы характеризуют работу поршня за один цикл двигателя, где по оси ординат отложены давления в цилиндре в килограммах на квадратный сантиметр, а по оси абсцисс — объемы в кубических сантиметрах в определенном масштабе. Измерив площадь диаграммы при помощи какого-либо способа и помножив на масштаб, взятый для ее изображения, получим работу двигателя за один цикл.
Чаще всего площадь диаграммы приводят к равновеликому прямоугольнику, у которого основание равно ходу поршня в выбранном нами масштабе, а высота равна среднему давлению на ходе поршня (линия кл). Это давление получило название среднего индикаторного давления
и имеет большое значение при подсчете индикаторной мощности двигателя и при сравнении различных двигателей друг с другом.
Двухтактный двигатель. Действительная индикаторная диаграмма двухтактного двигателя, подобно индикаторной диаграмме четырехтактного двигателя, также сильно отличается от теоретической вследствие опережения зажигания смеси в цилиндре, гидравлических потерь в окнах и трубопроводах, утечки тепла в стенки цилиндра и потерь на продувку в момент расширения и сжатия (см. рис. 15).
В конце хода сжатия для получения рабочего хода поршня, как уже говорилось, необходимо смесь поджечь. Сгорание топлива не происходит мгновенно, а требует для себя, хотя и очень короткого (около 1/зоо доли секунды), времени, за которое поршень успеет продвинуться примерно на 8—9% своего рабочего хода. Это приводит к сильному снижению как максимального, так и среднего давления по ходу поршня, т. е. к потере мощности двигателя и к неполному сгоранию смеси.
Чтобы лучше использовать теплоту, заключенную в топливе, надо дать больше времени для ее сгорания, а для этого поджигают смесь значительно раньше прихода поршня в ВМТ, или, как говорят, с некоторым опережением, тем большим, чем быстроходнее двигатель (линия с2с3).
Очень раннее зажигание делать также нежелательно, так как работа двигателя становится жесткой (жесткий ход). Появляются толчки, крутящий момент на валу становится неравномерным, а иногда это вызывает даже обратный поворот коленчатого вала и остановку двигателя.
Зажигание производят с таким расчетом, чтобы получить максимальное давление спустя 10—20° после ВМТ. Для этого опережение зажигания в быстроходных двигателях обычно делают в пределах 30—45° до ВМТ. Рабочая диаграмма получается с опережением полнее, а мощность больше, чем при воспламенении смеси в ВМТ.
Практически опережение зажигания осуществляют или от руки, поворотом специального рычажка, или при помощи автоматического регулятора, устанавливаемого на магнето и увеличивающего! опережение зажигания с ростом числа оборотов двигателя. Такие регуляторы установлены на последних наших отечественных конструкциях подвесных лодочных моторов ЛММ-6 и ЛМР-6.
Одной из значительных потерь, искажающих теоретическую диаграмму, является потеря на ходе поршня благодаря наличию продувочных и выпускных окон.
Так как в двухтактных двигателях очистка цилиндров от сгоревших газов и наполнение их свежей смесью происходят через соответствующие окна, то с начала открытия последних до момента закрытия давление в цилиндре устанавливается близким к атмосферному и процесс сжатия начинается не сразу после НМТ, а только с момента закрытия окон; то же самое и рабочий ход заканчивается не в НМТ, как это мы рассматривали в идеальном цикле, а раньше, с момента начала открытия их. Таким образом, на протяжении высоты окон получается потеря рабочего хода. Высота этих окон отнимает около 10—15% рабочего хода поршня.
Продолжительность открытия каждого ряда окон, очевидно, определяется его высотой: чем выше окно, тем длиннее путь, проходимый поршнем вдоль окна, а следовательно, и больший период времени окно остается открытым. Время, или период, того или иного процесса, выраженное в градусах поворота коленчатого вала, носит название фазы процесса
, или
фазы газораспределения
. Фазы газораспределения обычно изображаются круговыми диаграммами. Такого рода диаграмма для мотора ЛМР-6 приведена на рис. 16.
Из рис. 16,а видно, что при движении поршня вверх первыми закрываются продувочные окна, а выпускные еще открыты и выпуск газов продолжается, вследствие чего часть засосанной смеси вылетает наружу. Это уменьшает коэффициент наполнения ?v и снижает мощность двигателя. На увеличение наполнения двигателя сильно влияет процесс всасывания. Значительно лучшее наполнение картера смесью получается при золотниковом распределении, когда всасывание может начинаться сразу после закрытия продувочных окон, а поджатие смеси сразу после прохождения поршнем ВМТ, как изображено на диаграмме (рис. 16,6), и происходит на всем остальном ходе поршня, до нового открытия продувочных окон.
На рис. 17 приведен ряд конструкций золотникового управления впуском. Дисковый золотник представляет собой диск со сквозным окном для впуска воздуха. Своей шлифованной стороной он все время прижимается при посредстве слабой пружины к торцу одной из боковых стенок картера, на которой прорезано всасывающее окно. При вращении золотника его окно набегает на окно картера, периодически сообщая последний с атмосферой.
Рис. 16. Круговые диаграммы газораспределения с поршневым и золотниковым впуском смеси: а — поршневое распределение; б — золотниковое распределение
Иногда золотники изготовляются в виде пустотелого барабана с окном на цилиндрической поверхности. Цилиндрические золотники для свободного вращения выполняются с некоторым зазором. При сжатии смесь через зазор частично будет протекать в картер; цилиндрические золотники применяются только на быстроходных двигателях, где влияние зазора незначительно.
Гидравлические потери и понижение давления на протяжении рабочего хода примерно остаются такими же, как и у четырехтактного двигателя.
Сумма всех перечисленных потерь в индикаторной диаграмме двухтактного двигателя составляет приблизительно 8—10% от диаграммы теоретического цикла, а потому для определения работы цикла можно пользоваться последней, уменьшая ее на указанный процент.
Определять площадь диаграммы можно или при помощи специального прибора (планиметра), или вычертив ее на миллиметровке и подсчитав число миллиметров, заключенных внутри диаграммы. Площадь умножают на масштаб диаграммы и получают действительную работу цилиндра за один цикл.
Продолжительность отдельных фаз по углу поворота коленчатого вала в современных двухтактных подвесных моторах колеблется в пределах: для всасывающих окон 100— 115°, для продувочных 86—115°, для выхлопных 110—135°.
Делая сводку всех явлений в цилиндре двухтактного двигателя за полный цикл, мы получим такую картину: 1-й такт — ход поршня к ВМТ:
над поршнем сжатие смеси/под поршнем всасывание смеси.
Рис. 17. Конструкции золотников для впуска рабочей смеси в картер: а — дисковый золотник; б — цилиндрический золотник двухцилиндрового двигателя; в — цилиндрический золотник, приводимый от шестерни, связанной с коленчатым валом; г — цилиндрический золотник четырехцилиндрового двигателя
2-й такт — ход поршня к НМТ:
над поршнем сгорание и расширение/под поршнем сжатие смеси
Чистота заряда в двухтактных двигателях зависит от качества продувки. Количество отработанных газов после продувки колеблется в весьма широких пределах: от 3% для двухтактных двигателей с прямоточной продувкой при наличии избыточного воздуха или смеси при продувке и достигает 40—50% при камерной продувке.
Мощность двигателя и коэффициент полезного действия. Из механики известно, что мощность есть работа, совершаемая в единицу времени. Работа за один полный цикл выражается произведением среднего индикаторного давления рi на рабочий объем цилиндра.
Зная число оборотов двигателя в минуту и среднее индикаторное давление, легко подсчитать его мощность по формулам:
Получаемая мощность носит название
индикаторной мощности двигателя
. Она дает представление о работе газа, переданной поршню.
Из приведенных формул видно, что индикаторная мощность возрастает:
1) с увеличением литража двигателя Vs ;
2) с увеличением числа оборотов коленчатого вала двигателя n;
3) с увеличением среднего индикаторного давления рi ;
4) с увеличением числа цилиндров i.
Индикаторную мощность нельзя полностью использовать, для полезной работы из-за существующих потерь в самом двигателе, или так называемых «механических потерь», которые учитываются механическим коэффициентом полезного-действия. Мощность, которой мы можем располагать в действительности на коленчатом валу, называется «эффективной мощностью».
Таким образом, под механическим коэффициентом полезного действия понимают отношение эффективной мощности двигателя, т. е. мощности, действительно получаемой на валу двигателя Ne к индикаторной, т. е. мощности, передаваемой газами поршню двигателя Ni :
Так как при различном числе оборотов ηm неодинаков, то принято относить к двигателю только ηm , получающийся при максимально достижимой мощности Nemaks
Механические потери в двигателе можно подразделить на три основных вида:
1. На потери при трении всех движущихся частей двигателя: поршня, поршневых колец, подшипников. Величина этого вида потерь является самой большой и в основном зависит: а) от состояния поверхностей трущихся деталей, б) от давления между ними и в) от характера и качества смазки и равняется примерно 55—65% от общего количества механических потерь.
2. На потери при приведении в действие вспомогательных механизмов (магнето, насосы) обычно падает от 6 до 18% от общего количества потерь.
3. На потери при наполнении цилиндра свежей смесью и очистку его от отработанных газов, так называемые «гидравлические», или «насосные потери», падает все остальное. Последние потери слагаются из сопротивлений во всасывающем трубопроводе, в карбюраторе и во впускных окнах. Сюда относят трение газов о шероховатую поверхность каналов.
Обычно механические потери на основании практических данных принимаются равными 10—25% от индикаторной мощности, т. е. к гребному винту может быть подведено лишь 90—75% мощности, передаваемой газами поршням двигателя.
Эффективная мощность подобно индикаторной может быть выражена соответственными формулами:
величина Pеf входящая в формулу эффективной мощности, носит название
среднего эффективного давлени
я (по аналогии со средним индикаторным давлением). Она в действительности не может быть замеренной на двигателе и является условной. Ее получают вычислением из формулы мощности, если известны: литраж двигателя, обороты и мощность, развиваемая двигателем на гребном валу. Когда двигатель построен, эффективная мощность, а следовательно, и среднее эффективное давление определяются испытанием мотора или его двигателя на тормозном станке, где обычно замеряется развиваемый двигателем крутящий момент, а по крутящему моменту определяют уже эффективную мощность по формуле где Мк выражен в кгм, а эффективное давление уже получается из ранее приведенных формул мощности в килограммах на квадратный сантиметр. Среднее эффективное давление является важной величиной, им часто пользуются при сравнении различных двигателей между собой.
Для двухтактных двигателей подвесных моторов обычного типа величина среднего эффективного давления при максимальной мощности колеблется в пределах от 4 до 6 кг/см² и для спортивных и гоночных—от 7 до 12 кг/см².
С увеличением числа оборотов механические потери сильно возрастают, требуя затраты полезной энергии, а заряд цилиндра уменьшается. Потери возрастают не прямо пропорционально числу оборотов двигателя, а с некоторым превышением и, наконец, достигают величины прироста мощности; это соответствует максимальной мощности, после чего с дальнейшим ростом числа оборотов мощность двигателя начинает убывать.
Рис. 18. Типовой график внешней характеристики двигателя: Ni и Nе — мощность; Мк — крутящий момент; Се — удельный расход топлива на 1 л. с. ч.; ηm — механический КПД двигателя
Диаграммы, показывающие изменение эффективной мощности, в зависимости от числа оборотов при полном открытии дросселя получили название
характеристик двигателей
. Часто на этом же графике изображают кривые расхода топлива, изменения pt от числа оборотов, изменения крутящего момента Mk , механический КПД ηm , удельный расход топлива Се и другие данные, характеризующие двигатель. Такая диаграмма изображена на рис. 18.
Если эффективную мощность двигателя разделить на полный рабочий объем двигателя, выраженный в литрах, то мы получим так называемую литровую мощность, т. е. мощность, отнесенную к одному литру рабочего объема, двигателя.
Литровая мощность характеризует полноту использования объема всех цилиндров двигателя.
Для гоночных моторов в настоящее время, литровая мощность достигает величины 60—70 л. с, а в отдельных случаях бывает и значительно больше.
Двухтактные двигатели, уступая в экономичности четырехтактным двигателям, обладают, в свою очередь, такими преимуществами, как отсутствием клапанов и распределительного механизма, повышенной литровой мощности, простотой конструкции и ухода за ним, меньшим удельным весом и дешевизной двигателя в изготовлении. Чем проще двигатель, тем меньше причин для его неисправности, тем он надежнее. Здесь необходимо отметить и еще одно важное преимущество двухтактных двигателей: большую равномерность крутящего момента, так как в четырехтактных двигателях за счет инерции маховика осуществляются три такта, а в двухтактном всего один. Поэтому для установления равномерности крутящего момента требуются маховики значительно меньшего веса, что дополнительно снижает общий вес двухтактного двигателя примерно на 10—20% и даже больше.
(1) Нормальными атмосферными условиями называется атмосферное давление 1 кг/см² и температура +15°.
(2) О детонации см. главу 6.
Вперед Оглавление Назад
Мощность через расход воздуха
Мощность агрегата можно определить и по расходу воздуха. Правда, данный метод расчета доступен только тем автовладельцам, у которых установлен бортовой компьютер, позволяющий зафиксировать расход воздуха при 5,5 тысячи оборотов на третьей передаче.
Чтобы получить приблизительную мощность двигателя, необходимо полученный при вышеописанных условиях расход разделить на три. Формула выглядит так:
- P = G/3, где G – расход воздуха.
Данный расчет характеризует работу двигателя в идеальных условиях, то есть без учета потерь на трансмиссию, сторонних потребителей и аэродинамическое сопротивление. Реальная мощность ниже вычисленной на 10 или даже 20%.
Соответственно, величина расхода воздуха определяется в лабораторных условиях на специальном стенде, на который устанавливают автомобиль.
Показания бортовых датчиков сильно зависят от их загрязнения и от калибровки.
Поэтому расчет мощности двигателя на основе данных о расходе воздуха является далеко не самым точным и эффективным, но для получения приблизительных данных он вполне подойдет.
Пересчитываем «лошадей»: народные авто на стенде мощности
25 июня
Насколько официальные технические характеристики отличаются от реальных? Мы уже проверяли на лукавство машины из пограничной налогововыгодной категории до 250 л.с. Результаты оказались разными: кто-то честно выдавал заявленную мощность, а кто-то — несколько не дотягивал. Но одно дело — довольно мощные автомобили, которые в любом случае не страдают дефицитом тяги, и совсем другое — народные.
Вот мы и проверили машины попроще. Поскольку силенок у таких меньше, потеря каждой «лошади» становится весьма ощутимой. То же касается и крутящего момента.
Итак, вот наша тестовая пятерка. В бюджетном сегменте выступают Лада XRAY Cross и ее родственник-конкурент Renault Logan Stepway. В гольф-классе — набирающий обороты Kia Ceed третьего поколения. Привлек наше внимание и один из лидеров в стане кроссоверов — обновленный Nissan X‑Trail.
Китайский кроссовер Haval H6 не самый популярный на российском рынке среди одноклассников, но довольно свежий. О реальной мощности «китайцев», особенно с турбонаддувом, судачат в каждом гараже. Вот и проверим!
Разбежавшийся табун
Замеры мы проводим совместно с нашими хорошими знакомыми из мастерской AGP Motorsport - на современном динамометрическом стенде Dynomax 5000 AWD с беговыми барабанами, который рассчитан на привод любого типа. Прежде чем загнать машины на барабаны, несколько слов о методике испытаний.
Сейчас все производители замеряют мощность на маховике двигателя со всем вспомогательным оборудованием. Естественно, мы не можем снять мотор с каждой машины. Понятно, что стендовая мощность «с колес» при разгоне на прямой передаче с 1500–2000 об/мин до максимальных оборотов будет значительно меньше мощности нетто на маховике. Потому что неизбежны потери в трансмиссии. Именно поэтому любой современный стенд умеет пересчитывать результаты с учетом всех потерь.
Еще один автоматически применяемый стендом коэффициент касается условий испытаний. Согласно правилам ЕЭК ООН № 85 и ИСО 1585, температура окружающего воздуха должна быть +25 °C, атмосферное давление — 99 кПа.
Мощность через массу авто и время разгона до «сотни»
Расчет с применением веса автомобиля и его скорости разгона до 100 км/ч – один из самых простых методов вычисления реальной мощности двигателя, ведь масса авто и заявленное время разгона до «сотни» – паспортные параметры машины.
Этот метод актуален для двигателей, работающих на любых видах топлива – бензин, дизельное топливо, газ – ведь он учитывает лишь динамику разгона.
При расчете стоит учитывать вес транспортного средства вместе с водителем. Также чтобы максимально приблизить результат вычислений к действительному, стоит учесть и потери, затрачиваемые на торможение, пробуксовку, а также скорость реакции коробки передач. Играет роль и тип привода. Например, переднеприводные автомобили теряют на старте около 0,5 секунды, заднеприводные – от 0,3 секунды до 0,4 секунды.
Остается найти в сети калькулятор для расчета мощности авто через скорость разгона, внести необходимые данные и получить ответ. Нет смысла приводить математические расчеты, которые производит калькулятор, из-за их сложности.
Результат вычислений будет одним из самых точных, приближенных к реальному.
Данный метод расчета реальной мощности машины многие считают самым удобным, ведь автовладельцам придется приложить минимум усилий – измерить для чистоты эксперимента скорость разгона до 100 км/ч и внести дополнительные данные в автоматический калькулятор.
Расчет мощности ДВС по производительности форсунок
Не менее эффективным показателем мощности автомобильного двигателя является производительность форсунок. Ранее мы рассматривали её расчет и взаимосвязь, поэтому, труда, высчитать количество лошадиных сил по формуле, не составит. Подсчет предполагаемой мощности происходит по такой схеме:
Где, коэффициент загруженности не более 75-80% (0,75…0,8) состав смеси на максимальной производительности где-то 12,5 (обогащенная), а коэффициент BSFC будет зависеть от того какой это у вас двигатель, атмосферный или турбированный (атмо — 0.4-0.52, для турбо — 0.6-0.75).
Узнав все необходимые данные, вводите в соответствующие ячейки калькулятора показатели и по нажатию кнопки «Рассчитать» Вы сразу же получаете результат, который покажет реальную мощность двигателя вашего авто с незначительной погрешностью. Заметьте, что вам совсем не обязательно знать все представленные параметры, можно расчищать мощность ДВС отдельно взятым методом.
Ценность функционала данного калькулятора заключается не в расчете мощности стокового автомобиля, а если ваш автомобиль подвергся тюнингу и его масса и мощность притерпели некоторые изменения.
Другие типы двигателей
Не секрет, что двигатели применяются не только в автомобилях, но и в промышленности и даже в быту. Двигатели разных размеров можно найти на заводах – приводят в движение валы – а также в бытовой технике вроде автоматической мясорубки.
Иногда требуется вычислить реальную мощность и таких двигателей. Как это сделать, описано далее.
Стоит сразу заметить, что расчет мощности 3-фазного двигателя можно произвести следующим образом:
- P = Mкрутящий * n, где Mкрутящий – крутящий момент, а n – скорость вращения вала.
Внешняя скоростная характеристика (ВСХ)
Внешняя скоростная характеристика двигателя показывает зависимость мощности, расхода топлива и крутящего момента от числа оборотов коленвала. Все эти параметры показываются графически в виде кривых.
Внешняя скоростная характеристика
На рисунке можно видеть кривые с обозначениями Pe – мощность двигателя, Mе – крутящий момент, ge – удельный расход топлива. Как видно, с ростом числа оборотов и мощности увеличивается расход топлива. Крутящий момент растет до определенного уровня, а затем идет на спад. В точке, где наиболее эффективный крутящий момент и мощность двигателя, будет самый оптимальный показатель расхода топлива.
Производители моторов борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке. Такой двигатель и из болота вытянет, и в городе позволяет быстро ускоряться.
Внешняя скоростная характеристика дает оценку динамическим характеристикам автомобиля, определяет КПД и топливный расход при разных параметрах.
Высокий крутящий момент на более низких оборотах увеличивает тяговую силу агрегата, грузоподъемность и проходимость.
Асинхронный двигатель
Асинхронный агрегат – устройство, особенность которого заключается в том, что частота вращения магнитного поля, создаваемого его статором, всегда больше частоты вращения его ротора.
Принцип действия асинхронной машины похож на принцип действия трансформатора. Применяются законы электромагнитной индукции (изменяющееся во времени потокосцепление обмотки наводит в ней ЭДС) и Ампера (на проводник определенной длины, по которому течет ток, находящийся в поле с определенным значением индукции, действует электромагнитная сила).
Асинхронный двигатель в общем случае состоит из статора, ротора, вала и опоры. Статор включает в себя следующие основные составляющие: обмотка, сердечник, корпус. Ротор состоит из сердечника и обмотки.
Основная задача асинхронного двигателя – преобразование электрической энергии, которая подается на обмотку статора, в механическую энергию, которую можно снять с вращающегося вала.
Мощность асинхронного двигателя
В технической области науки выделяют три вида мощности:
- полную (обозначается буквой S);
- активную (обозначается буквой P);
- реактивную (обозначается буквой Q).
Полную мощность можно представить в виде вектора, который имеет действительную и мнимую часть (стоит вспомнить раздел математики, связанный с комплексными числами).
Действительная часть представляет собой активную мощность, которая затрачивается на выполнение полезной работы вроде вращения вала, а также на выделение тепла.
Мнимая часть выражена реактивной мощностью, которая принимает участие в создании магнитного потока (обозначается буквой Ф).
Именно магнитный поток лежит в основе принципа работы асинхронного агрегата, синхронного двигателя, машины постоянного тока, а также трансформатора.
Реактивная мощность используется для заряда конденсаторов, создания магнитного поля вокруг дросселей.
Активная мощность рассчитывается как произведение тока с напряжением на коэффициент мощности:
- P = I * U * cosφ.
Реактивная мощность рассчитывается как произведение тока с напряжением на коэффициент мощности, сдвинутый по фазе на 90°. Иначе можно записать:
- Q = I * U * sinφ.
Значение полной мощности, если помнить, что ее можно представить в виде вектора, можно рассчитать по теореме Пифагора как корень суммы квадратов активной и реактивной мощности:
- S = (P2+Q2)1/2.
Если рассчитать формулу полной мощности в общем виде, то получится, что S – это произведение тока на напряжение:
- S = I * U.
Коэффициент мощности cosφ – это величина, численно равная отношению активной составляющей к полной мощности. Чтобы найти sinφ, зная cosφ, нужно вычислить значение φ в градусах и найти его синус.
Это стандартный расчет мощности двигателя по току и напряжению.
Вам будет интересно:Инженерия знаний. Искусственный интеллект. Машинное обучение
Понятие мощности электродвигателя
Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л.с., HP, Horse Power). Для справки: 1 л.с. приблизительно равна 0,75 кВт.
На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность
. Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.
Электрическая (потребляемая) мощность
двигателя Р1 всегда больше отдаваемой Р2, поскольку в любом устройстве преобразования энергии существуют потери. Основные потери в электродвигателе – механические, обусловленные трением. Как известно из курса физики, потери в любом устройстве определяются через КПД (ƞ), который всегда менее 100%. В данном случае справедлива формула:
Р2 = Р1 · ƞ
КПД в двигателях зависит от номинальной мощности – у маломощных моделей он может быть менее 0,75, у мощных превышает 0,95. Приведенная формула справедлива для активной потребляемой мощности. Но, поскольку электродвигатель является активно-реактивной нагрузкой, для расчета полной потребляемой мощности S
(с учетом реактивной составляющей) нужно учитывать реактивные потери. Реактивная составляющая выражается через коэффициент мощности (cosϕ). С её учетом формула номинальной мощности двигателя выглядит так:
Р2 = Р1 · ƞ = S · ƞ · cosϕ
Расчет мощности 3-фазного асинхронного агрегата
Чтобы рассчитать полезную мощность на обмотке статора асинхронного 3-фазного двигателя, следует умножить фазное напряжение на фазный ток и на коэффициент мощности, а полученное значение мощности умножить на три (по количеству фаз):
- Pстатора = 3 * Uф * Iф * cosφ.
Расчет мощности эл. двигателя, имеющей активный характер, то есть мощности, которая снимается с вала двигателя, производится так:
- Pвыходная = Pстатора – Pпотерь.
В асинхронном двигателе имеют место следующие потери:
- электрические в обмотке статора;
- в стали сердечника статора;
- электрические в обмотке ротора;
- механические;
- добавочные.
Для расчета мощности трехфазного двигателя в обмотке статора, имеющей реактивный характер, необходимо сложить три составляющие данного типа мощности, а именно:
- реактивную мощность, расходуемую на создание потока рассеяния обмотки статора;
- реактивную мощность, расходуемую на создание потока рассеяния обмотки ротора;
- реактивную мощность, расходуемую на создание основного потока.
Реактивная мощность в асинхронном двигателе в основном расходуется на создание переменного электромагнитного поля, но часть мощности расходуется на создание потоков рассеяния. Потоки рассеяния ослабляют основной магнитный поток и снижают эффективность работы асинхронного агрегата.
Мощность по току
Расчет мощности асинхронного двигателя можно осуществить, используя данные тока. Для этого следует выполнить следующие действия:
Мощность всегда можно рассчитать, как произведение тока на напряжение. При этом важно знать, какие именно значения U и I следует брать. В данном случае U – напряжение питания, это постоянная величина, а I может варьироваться в зависимости от того, на какой обмотке (статора или ротора) замеряется ток, поэтому необходимо выбрать именно его среднее значение.
Расчет по массе и времени разгона от нуля до сотни
Также можно определить, как измеряется мощность двигателя по общему весу автомобиля и времени его разгона до 100 километров в час. К сожалению, у этого способа есть большой недостаток – конечная формула достаточно сложна и может сильно варьироваться в зависимости от технических характеристик автомобиля (типа езды, характера трансмиссии и т.д.).
Оптимальный алгоритм действия:
- Ускорьте ваш автомобиль с 0 до 60 километров в час. Определите время разгона любым удобным способом (обычно это делается с помощью бортового компьютера).
- Узнайте вес Вашей машины – это можно сделать с помощью одного и того же бортового компьютера, технической документации и так далее.
- Используйте наш калькулятор – введите вес и время разгона, выберите тип привода, укажите передачу.
Мощность по габаритам
Статор имеет множество различных составляющих, одна из которых – сердечник. Для расчета мощности двигателя с использованием габаритов следует выполнить следующие действия:
Лучше производить все измерения и вычисления с максимальной точностью, чтобы расчет мощности двигателя электропривода был максимально приближен к действительности.
Мощность электродвигателя по установочным и габаритным размерам
Для первого способа необходимо знать установочные размеры электродвигателя и синхронную частоту вращения. Последняя измеряется с помощью мультиметра, установленного в режим миллиамперметра. Для этого указатель колеса выбора устанавливаем на значение 100µA. Щуп черного цвета подключаем в общее гнездо «COM», а щуп красного цвета – к гнезду для измерения напряжения, сопротивления и силы тока до 10 А.
После этого обесточиваем электродвигатель и снимаем крышку с клеммной коробки. Щупы мультиметра подключаем к началу и концу любой из обмоток (например, V1 и V2). После этого рукой медленно проворачиваем вал двигателя так, чтобы он совершил один оборот, и считаем количество отклонений стрелки из состояния покоя, которые она сделает за это время. Число отклонений стрелки за один оборот вала равно количеству полюсов и соответствует такой синхронной частоте вращения: Теперь необходимо выяснить установочные размеры двигателя. Для замеров используем штангенциркуль, механический или электронный, а также измерительную рулетку. Записываем результаты измерений в миллиметрах: диаметр и длину вылета вала, высоту оси вращения, расстояние между центрами отверстий в «лапах», а если двигатель фланцевый, то диаметр фланца и диаметр крепежных отверстий.Полученные данные сравниваем с параметрами из таблиц 1-3. Таблица 1. Определение мощности двигателя по диаметру вала и его вылету Таблица 2. Определение мощности по расстоянию между отверстиями в лапах Таблица 3. Определение мощности по диаметру фланца и крепежных отверстий