В последние годы автолюбители стали оснащать свои автомобили дневными ходовыми огнями. Хотя правила допускают в этом качестве использовать штатные осветительные приборы (противотуманки, фары и т.д.), многие предпочитают выполнять ДХО в виде отдельных блоков. И часть автомобилистов столкнулась с тем, что светодиоды, на основе которых выполнены фонари, выходят из строя, не проработав и года. Причину столь короткой службы никто детально не выяснял. Возможно, это связано с качеством LED от неизвестных производителей, или с тем, что изготовители намного завышают заявленный ресурс полупроводниковых изделий, а может быть все дело в недостаточном охлаждении.
Но существует устойчивое мнение, что светодиоды выходят из строя из-за нестабильного напряжения в бортсети авто или из-за кратковременных выбросов по цепи питания, амплитуда которых достигает нескольких десятков вольт. Спастись от этой беды пытаются установкой стабилизатора напряжения бортсети для ДХО автомобиля.
Выбор стабилизатора
В бортовой сети автомашины рабочее питание составляет примерно от 13 В, большинству же светодиодов подходит 12 В. Поэтому обычно ставят стабилизатор напряжения, на выходе которого 12 В. Таким образом, обеспечиваются нормальные условия для работы светотехники без ЧП и преждевременного выхода из строя.
На этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Выбрать нужно тот, что достоин любимого транспортного средства и, кроме того:
- действительно будет работать;
- обеспечит безопасность и защищенность светотехнике.
Как правильно подобрать
Для подбора прибора промышленного изготовления надо задаться следующими параметрами:
- выходное напряжение;
- рабочий ток;
- минимальное входное напряжение (максимальное обычно составляет несколько десятков вольт, такого напряжения в сети автомобиля не бывает).
Как подбирать выходное напряжение, сказано выше. Рабочий ток должен превышать ток потребления фонарей (или фонаря, если стабилизатор ставится на каждый прибор отдельно) с запасом. На последний параметр мало кто обращает внимание, а он может оказать критическое влияние на работу всей системы.
Самый простой стабилизатор напряжения, сделанный своими руками
Если у вас нет желания покупать готовое устройство, тогда стоит узнать, как сделать простенький стабильник самому. Импульсный стабилизатор в авто сложно изготовить своими руками. Именно поэтому стоит присмотреться к подборке любительских схем и конструкций линейных стабилизаторов напряжения. Самый простой и распространенный вариант стабильника состоит из готовой микросхемы и резистора (сопротивления).
Сделать стабилизатор тока для светодиодов своими руками проще всего на микросхеме LM317. Сборка деталей (см. рисунок ниже) осуществляется на перфорированной панели или универсальном печатном плато.
Устройство позволяет сохранить равномерное свечение и полностью избавить лампочки от моргания.
Схема 5 амперного блока питания с регулятором напряжения от 1,5 до 12 В.
Для самостоятельной сборки такого устройства понадобятся детали:
- плато размером 35*20 мм;
- микросхема LD1084;
- диодный мост RS407 или любой небольшой диод для обратного тока;
- блок питания, состоящий из транзистора и двух сопротивлений. Предназначен для отключения колец при включении дальнего или ближнего света.
При этом светодиоды (в количестве 3 шт.) соединяются последовательно с токоограничивающим резистором, выравнивающим ток. Такой набор, в свою очередь, параллельно соединяется со следующим таким же набором светодиодов.
Рекомендации по изготовлению
Для изготовления потребуются электронные компоненты для выбранной схемы. Приобрести их можно в специализированных магазинах или через интернет. Для устройства на интегральном линейном стабилизаторе корпус не нужен, но надо позаботиться о радиаторе. Также радиатор понадобится при изготовлении линейника на дискретных элементах. Более сложные устройства надо собирать на платах. Владеющие домашними технологиями смогут разработать и вытравить печатную плату самостоятельно. Остальным лучше воспользоваться макетной платой – отрезать необходимый кусочек и смонтировать элементы на нем.
Монтаж на макетной плате.
Также надо подобрать или собрать корпус, не забывая об отводе тепла. Затянуть плату в термоусадку – не лучший вариант в этом плане. Также понадобится паяльник с набором расходников.
Общую инструкцию по изготовлению дать сложно – все зависит от выбранной схемы и предпочитаемых технологий. Но можно дать несколько советов тем, у кого опыта в изготовлении электронных устройств немного:
- все соединения надо тщательно пропаивать (стараясь не перегреть элементы и проводники в изоляции) – условия эксплуатации будут сопряжены с тряской и перепадами температур, и некачественная пайка сразу даст о себе знать;
- корпус конструкции должен исключать попадания внутрь воды и грязи – при установке устройства под капотом этих субстанций будет достаточно;
- если корпус не используется, места пайки надо тщательно изолировать – по тем же резонам;
- после сборки и проверки работоспособности не будет лишним покрыть плату со стороны пайки лаком и просушить.
Только тщательный подход к изготовлению может гарантировать хоть сколько-нибудь долгую работу самоделки в жестких условиях.
Стабилизатор для светодиодов на микросхеме L7812 в авто
Стабилизатор тока для светодиодов может быть собран на базе 3-контактного регулятора напряжения постоянного тока (серии L7812). Устройство навесного исполнения отлично подходит для питания, как светодиодных лент, так и отдельных лампочек в автомобиле.
Необходимые компоненты для сборки такой схемы:
- микросхема L7812;
- конденсатор 330 мкф 16 В;
- конденсатор 100 мкф 16 В;
- диод выпрямительный на 1 ампер (1N4001, к примеру, или аналогичный диод Шоттки);
- провода;
- термоусадка 3 мм.
Вариантов на самом деле может быть много.
Целесообразность использования LT 1083/84/85
В схеме стабилизатора напряжения на 12 вольт может быть разная ИМС. В зависимости от серии микросхемы, условия для её работы разнятся. Микросборки серии LT 1083/84/85 можно применять для изготовления стабилизатора на такое напряжение.
К сведению. Ток на выходе LT 1083 может достигать 7 А, на LT 1084 и LT 1085 допустимые токи нагрузки – 5 А и 3 А, соответственно.
Конструкторы для радиолюбителей, поставляемые из Китая, предлагают самостоятельно собрать схему простого блока питания на подобной платформе стабилизаторов.
Стабилизатор, входящий в данную схему, выдаёт на выходе ток до 7,4 А. Резистор R2, позволяющий изменять величину выходного напряжения, можно заменить постоянным, подобрав его значение так, чтобы U на выходе было равно 12 В. Диоды подбираются на напряжение не менее 50 В и ток не менее 12 А.
Внимание! СН на этой микросхеме требует разницы напряжения между входом и выходом не менее 1,5 В. При выполнении этого условия ИМС будет выдавать стабильное напряжение. При этом она имеет тепловую защиту и защиту от превышения значения выходного тока.
Схема подключения на базе LM2940CT-12.0
Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева. При использовании более десяти светодиодов, рекомендуется к стабильнику приделать алюминиевый радиатор.
Может кто-то пробовал и скажет, что можно запросто обойтись без лишних заморочек, напрямую подключив светодиоды. Но в этом случае последние большую часть времени будут находиться в неблагоприятных условиях, посему прослужат недолго или вовсе сгорят. А ведь тюнинг дорогих авто выливается в довольно крупную сумму.
А по поводу описанных схем, их главное достоинство – простота. Для изготовления не требуется особых навыков и умений. Впрочем, если схема слишком сложная, то собирать её своими руками становится не рационально.
Испытание самодельных LED фар
Примерно через 2 часа тестирования система достигла температуры около 35 градусов, то есть несмотря на использование резисторов вместо микросхемных инверторов намного меньше, чем эквивалентная лампа накаливания.
Равномерность оттенков подсветки не идеальна. В нижней части фар хорошо — диоды прекрасно светят рядами линз и освещают ровно. Выше — из-за наклона стеклянных светодиодов свет начинает немного рассеиваться, а яркость немного зависит от угла наблюдения.
Можно было бы выполнить ступенчатую настройку светодиодных полосок, но приоритетом было разумное соотношение цены и усилий, которое полностью удовлетворяет владельца автомобиля.
- После месяца тестирования, когда автомобиль объездил около 2 тысяч километров, ни один светодиод не сгорел. Посмотрим, как это будет дальше.
- После года езды, когда автомобиль проехал около 10000 км — один диод был сожжен и одна полоска потухла. Наверное оказался бракованный.
Вклад времени в эти задние фонари для авто — 3 дня до 2-3 часа в день, а стоимость материалов для обеих ламп составляет 3000 рублей — это очень хорошо.
Подключение через 4 контактное реле от генератора или датчика масла
Два следующих способа имеют общую основу и подразумевают работу дневных ходовых огней только после запуска двигателя. Схема включения ДХО от генератора базируется на переключении четырёх контактного реле и геркона. Контакты реле ДХО подключают так:
- 85 – на плюсовой провод к габаритам;
- 86 – на любой вывод геркона;
- 87 и второй вывод геркона – на «+» аккумулятора.
Проверив надёжность всех контактов, переходят к настройке. Для этого заводят двигатель и, перемещая геркон вблизи генератора, добиваются его срабатывания и стабильного свечения ДХО. Затем геркон прячут в термотрубку и с помощью нейлоновых стяжек фиксируют в найденном месте.
В момент пуска двигателя, а затем и генератора замыкаются контакты геркона и реле, подавая напряжение питания на светодиоды ходовых огней. При этом лампы габаритов остаются отключенными, так как ток через катушку реле мал, чтобы их зажечь.
В отсутствие геркона можно запитать ДХО от датчика давления масла. В этом случае 86-й контакт соединяют с лампой давления масла. В остальном схемотехника дублируется. Обе схемы имеют общий недостаток. Их нельзя применять, если в габаритах установлены светодиоды.
Мой опыт
У моего друга есть ВАЗ ПРИОРА, и он любитель засунуть LED лампы в габариты, фары подсветку и т.д. Без таких стабилизирующих элементов они реально долго не ходили (пару-тройку месяцев и все). Сейчас же один комплект дешевых вариантов ходит уже третий год, и все благодаря стабилизации!
Есть и минусы такие элементы ставятся в разрыв провода, который идет до источника, там даже указаны «IN» и «OUT» куда нужно подключать провод и откуда выводить. Стоимость за 5 штук примерно 160 рублей, то есть каждый примерно около 30. Друг выставил 11,8В подключил к платам провода и залил их клеевым пистолетом, теперь влага им не страшна.
Лично я сам купил такие платы и экспериментировал с ними, у меня есть блок питания который выдает от 15 до 24В. От него я запитал два провода и подвел на модуль, а уже с него на светодиод, выставил около 11,9. И знаете, как бы я не переключал в блоке питания напряжение, за платой оно стабильно держалось 11,9В без каких либо скачков (весь эксперимент будет на видео).
Так что вывод можно купить стабилизаторы (около 30р за штуку), сами лампочки (около 50р за штуку) и в ИТОГЕ получаете за 80 – 100р вариант, который будет работать ну очень долго (3 года точно).
Сейчас видео версия смотрим
Вот такой материал, думаю он вам был полезен, подписывайтесь на сайт и канал будет еще много интересных видео. Искренне ваш АВТОБЛОГГЕР.
Похожие новости
- Почему свистит ремень генератора. На холодную или при нагрузке. …
- Как установить ксенон. Можно ли это сделать в фары обычного авто…
- Как проверить предохранитель в машине. Применяем мультиметр (тес…
Добавить комментарий Отменить ответ
Режим работы
По техническому регламенту для авто, DRL должны автоматически включатся при запуске двигателя. При включении ближнего света, должны автоматически отключатся, чтобы не слепить в темное время суток.
В продаже есть и комбинированные модели с установленными сигналами поворота. Секция дублирования указателей поворота подключается отдельно параллельно штатным поворотникам. Наличие стабильного питания тоже обязательно.
DRL с поворотником
Для моделей с дополнительным управлением встречается функция провожающей подсветки, которая работает 10 минут после выключения двигателя. Она освещает ваш путь до дома или землянки, смотря где вы проживаете. У Osram DRL есть режим, в котором они не выключаются, а притухают на 50%. только не знаю на сколько это законно и будет ли слепить.
Другие малопопулярные способы
Многим интересно, как подключить ДХО без реле самостоятельно, но это зависит от электрики вашего автомобиля, ищите решение в интернет клубах посвященных вашему авто. Самое главное, чтобы в этом месте подавалось питание после запуска двигателя.
Основная схема подключения ДХО, через 4 или 5 контактное реле, которое отключает при включении ближнего. Кому не лень порыться в проводке авто, подсоединяют от датчика давления масла или генератора. На любом транспорте при запуске движка загорается лампочка давления масла на приборной панели, сигнал с этого провода используется для подачи питания. Второй способ, как подключить ходовые огни самостоятельно, это подключить к генератору. Они будут включатся автоматически при появлении напряжения на генераторе.
Выбираем ленту для машины
Постараюсь не лить воду, а кратко разберем на что обращать внимание при выборе светодиодной ленты
Тип светодиодной матрицы
Светодиодная подсветка салона. Для подсветки салона автомобиля, включая багажник выбирайте — SMD 3528 60шт/м (размер одного светодиодного кристалла — 3,5×2,8мм). Почему она?
Во-первых мы получаем среднюю мощность 4,4-4,8 Вт на погонный метр со световым потоком порядка 250-300 Лм. При такой мощности светодиоды не требуют теплоотвода и светодиодная лента спокойно монтируется на пластиковые элементы. А светового потока достаточно для полноценного освещения любых элементов салона.
Во-вторых это самая распространенная лента в продаже, покупаем в первом попавшемся магазине.
Варианты типа SMD 5050, 5630, 5730 не подойдут ввиду высокой мощности. Неприятно высокая яркость и необходимость монтировать но теплоотвод, делает их не самым удачным выбором для светодиодной подсветки салона машины.
Наружное освещение автомобиля. Тут включаем голову. Если LED подсветка под днищем авто, можно выбрать светодиоды помощнее — SMD 5050 30/60 шт/м. Алюминиевый профиль будет нашим теплоотводом (про монтаж дальше). Для светодиодной подсветки номера машины или (не дай бог) фар головного света — это плохой выбор. Подобная светодиодная подсветка будет приманкой для инспекторов ГИБДД (про правила установки и штрафы читайте в конце статьи).
Обычные светодиоды или RGB — разницы нет. RGB чуть дороже, ее сложнее подключать и требует дополнительно контроллера управления (подробнее про подключение RGB ленты). Зато она позволяет менять цвет подсветки.
Класс защиты
В продаже преимущественно три класса защиты – IP20, IP65, IP68.
- IP20 – открытая лента без защитных покрытий, подходит для использования внутри сухих помещений. Боится влаги, пыли, любых механических воздействий.
- IP65 – с защитным силиконовым слоем, способным защитить от конденсата.
- IP68 – герметичные водонепроницаемая светодиоды, которые можно размещать на днище автомобиля.
Класс LED IP68 Для светодиодной подсветки бардачка или низа торпеды подойдет и IP20, если ее никто не будет дергать и поливать водой. Для подсветки остальных элементов желателен класс IP 65-68.
Добавить ссылку на обсуждение статьи на форуме
РадиоКот >Схемы >Питание >Преобразователи и UPS >
Теги статьи: | Добавить тег |
Двухрежимный стабилизатор тока стоп/габарит для светодиодных автомобильных ламп
Автор: KomSoft, Опубликовано 13.04.2017 Создано при помощи КотоРед.
Довольно часто приносят автомобильные светодиодные лампы, которые изготовлены красиво, но радостно сгорают. Их потроха состоят из собственно светодиодов, резистора (типа светит «габарит») и диода (типа светит «стоп»). Это из дешевых — а дорогие мне в руки не попадали, возможно сделаны качественней.
Следовательно, хочется их по возможности малой кровью улучшить. В интернете гуляет масса схем, подобных вот этим:
Эти схемы без стабилизации тока. Первая стабилизирует напряжение, вторая на «стоп» тоже стабилизирует напряжение, а на «габарит» добавляет к нему ШИМ. Неплохо, но LD1084 дороговат, а вторая содержит многовато деталей.
Существует простой линейный стабилизатор тока
Вот от него мы и оттолкнемся и попробуем запихнуть это в цоколь лампы P21/5W, не забыв про нагрев элементов стабилизатора. Рисуем схему:
Диоды VD1, VD2 развязывают сигналы «стоп» и «габарит», транзисторы Q1 и Q3 образуют стабилизатор тока, транзистор Q2 переключапет режимы.
Минимальное напряжение бортовой сети принимаем 12В. Светодиоды собираем в матрицу (кластер) с напряжением как можно ближе к 10В, чтобы меньше уходило на нагрев схемы. 2 вольта оставляем на цепочку VD1/VD2+Q1+R5/R4.
При подаче напряжения на B(Break/Тормоз) транзистор Q2 открыт, напряжение канала близко к 0 и ток стабилизации определяется резистором R5.
При подаче напряжения на T(Tail/габарит) Q2 закрыт и — ток стабилизации определяется суммой резисторов R4+R5.
Самый тяжелый с точки зрения нагрева режим будет «стоп», когда стабилизируется максимальный ток. Особенно, если это летом по жаре в пробке. Габарит светит неярко, а поворотник мигает — поэтому в этих режимах будет полегче.
О выборе деталей:
Диоды шоттки должны выдерживить максимальный ток светодиодов (до 1А) и напряжение 20-40В.
Резистор R5 выбирается по формуле R5 = 0.7 / IB, т.к. при нажатии на тормоз Q2 открывается и почти все напряжение (0,7В) падает на R5, а еще немного на Q2 (зависит от сопротивления канала, см. ниже). Его мощность на токах до 1А достаточно 1Вт или 0,5Вт на токах до 0,6А. IB — желаемый ток в режиме стоп.
Резистор R4 выбирается по формуле R4 = 0.7 / IB — R5, по желаемой яркости всетодиодов для габаритов. Скорее всего подобрать опытным путем. Его мощность достаточно 0,125Вт.
Транзистор Q2 работает в ключевом режиме, поэтому рассеивает малую мощность 0,05Вт, сопротивление канала в открытом состоянии должно быть как можно меньше. Должны подойти IRML0030, IRML2030, IRML6344.
Транзистор Q1 должен рассеивать относительно большую мощность 1-2Вт, сопротивление канала в открытом состоянии не столь актуально, поскольку за счет него все и работает. Должны подойти IRFL014, IRFL110, IRFL410, IRFL4105, IRFL4310, IRFR320, IRLL2703, IRLL2705, IRLR024, IRFU310. Корпус SOT-223, мощность 1Вт, Rds = 0.16.
Транзисторы выбирались по этим критериям и минимальной цене.
В целях минимизации цены и места можно попробовать сборки IRF7301, IRF7303 и IRF7341 — мощность 2Вт, Rds = 0.05, корпус SO-8.
Схема моделировалась в Протеусе — LED-IStab.DSN. Ниже приведена таблица токов, напряжений и мощности при напряжении бортовой сети 16В, падении на светодиодах 9В и разном токе через светодиоды. Результаты приблизительные, но дают понятие о порядке величин для выбора элементов.
Iled = 0.07A | Iled = 0.18A | |||
U, V | P, W | U, V | P, W | |
Q1 | 5 | 0.35 | 5.1 | 0.9 |
R4 | 0.2 | 0.014 | 0.5 | 0.09 |
Q2,R5 | 0.5 | 0.04 | 0.2 | 0.04 |
Это все была теория, которая прикидывалась давно, а практика как всегда внесла свои коррективы.
Практическая реализация.
С известных торговых площадок заказано по сотне светодиодов (на одну лампу нужно до 40 шт в зависимости от цвета/тока/напряжения). Заказаны белые 5630, желтые 5050 и красные 5050.
Параметры у них заявлены такие:
Red | Yellow | WarmWhite | Red / Yellow | Green / Blue | |
Model Number | SX-5050-RED | SX-5050-YELLOW | 5630/5730 | 5630/5730 | 5630/5730 |
Max. Forward Voltage | 2.0-2.6V | 2.0-2.6V | 3.0-3.2V 3.2-3.5V | 2.0-2.4V | 3.2-3.5V |
Max. Forward Current | 20-60mA | 60mA | 150mA | 150mA | 150mA |
CAT | 10-20LM | 800-1200mcd | 50-55LM 60-65LM | 22LM / 15-18LM | 32-35LM / 12-15LM |
Или по другой табличке:
К сожалению желтые и красные светодиоды разочаровали — обладают намного меньшей яркостью, чем белые. Но у них меньше рабочее напряжение, поэтому их можно поставить больше.
При разводке платы пришлось пойти на компромис и немного упростить схему, а именно — убрань стабилизацию на габариты (на односторонней плате не помещалась в габариты цоколя, а двухстороннюю плату делать не хочется, так как стоит задача сделать максимально просто). Такой компромис приводит к тому, что при изменении напряжения (оборотов двигателя) будет немного меняться яркость, но максимальный ток превышен не будет, что отвечает поставленым требованиям. При этом экономятся 2 элемента (убираются два резистора и транзистор, а добавляется один резистор). Если делать только одноконтактные «лампочки», то можно собирать на той же плате, не впаивая D1, R6, R7, а D2 заменить перемычкой. А можно еще сэкономить, разведя плату только под нужные детали. Резисторы R6-R7, R9-R10 стоят парами, чтобы не превышать рассеиваемую мощность. В расчетке дается общее сопротивление (т.е. при установке двух резисторов параллельно его нужно умножить на 2).
Вот расчет (скриншот) для 8 столбцов по 5 красных светодиодов 5050 с заявленым потоком 10-15лм при токе 60мА (20 на каждый светодиод) и падением напряжения 2,1В. Резистор 1R58 (просто таких было много — спаяны с плат жестких дисков) дает расчетный ток 380мА на все, т.е. 47,5мА на столбец или 16мА на диод. Ток стабилизации выбран таким, чтобы при перегорании (или потере контакта) одной линейки он не превысил максимальный ток светодиодов. Т.е. при сборке из 8 линеек выбирает рабочий ток чуть меньше 7/8 от максимального. Мощность на транзисторе стабилизатора — 0,8Вт, перегрев транзистора стабилизатора — 50°.
Ток начинает стабилизироваться от 13,4В. Реально при включении (прогреве) снижается от 400мА до 360мА.
В габариты установлены резисторы R6, R7 по 62 Ом. При габаритах ток меняется от 80мА (при 13В) до 120мА при 15В, соответственно меняется и яркость, но не сильно.
Визуально при установке в фару яркость габарита примерно соответствует, а яркость в режиме стоп/поворот немного меньше, чем у желтого поворотника 21Вт.
После 20 мин. непрерывной работы при 15В греется до горячего (светодиоды и транзистор), при напряжении 14,5В — светодиоды горячее, чем транзистор (на транзисторе палец держать можно).
Второй вариант собран со светодиодами 5630 (150мА/55лм). По даташиту зависимость линейная, т.е. при токе 75мА будет около 27лм. Падение напряжения: 20мА — 3,08В, 50мА — 3,4В, 100мА — 3,9В. При 3*8=24 светодиода будет ок. 650 лм — очень даже неплохо.
Теория почти воплощена в практику, начинаем колхозить!
Плата стабилизатора имеет такой вид, размеры 1300*500 mils, т.е примерно 32,5*12,5мм
Платки для светодиодов приведены в конце статьи в формате .lay. При сборке светодиоды нужно устанавливать плюсом к цоколю, тогда плату драйвера можно будет впаять штырьком вверх в плату светодиодов. Так выглядят спаяные платы — 8 линеек, торец и плата стабилизатора. Последовательно со светодиодами я впаял резисторы ом по 10, чтобы немного балансировать токи. Для светодиодов 5050 резисторы впаяны на торцевой плате.
Прямоугольная (а не трепецивидная) форма линеек (лепестков) обеспечит вентиляцию элементов стабилизатора. Для сборки применяется высокотехнологичное вспомогательное устройство, изготовленное из картона, диаметр тонкой части — 14мм. Это диаметр верхней (развернутой) части цоколя, при этом платы становятся на горизонтальную часть цоколя. Толстая часть бумажной гильзы служит для упора, она на 2-3 мм больше. Дополнительным элементом является резинка.
Теперь закрепляем платы по окружности резинкой и по очереди отводя, вставляем торцевую часть. Не с первого раза получается, но достаточно просто. Затем (не снимая резинку) выравниваем.
Запаиваем г-образными скобами (создавая электрический переход) и пропаиваем аноды (резисторы) по окружности, создавая общий плюсовой контакт и закрепляя другой конец конструкции. Нижние площадки не трогаем! Они служат для припаивания к цоколю, а это минус! Получается достаточно жестко. Спокойно снимаем с оправки и нижний торец ровняем об наждачку.
Предварительно проверив, подпаиваем плату стабилизатора, ее нижний конец одеваем в термоусадку, чтобы он не коротил о цоколь.
Следует заметить, что вид цоколя сбоку везде нарисован неправильно! Правильный вид цоколя соответствует картинке, где лампа с колбой и выступ направлен к нам (второй слева). На соседнем рисунке (нижнем) — уже неправильно, а на верхем — верно! Т.е. если смотреть на лампу так, что левый боковой выступ выше, а правый — ниже, то на дне нет правого и левого контакта, а есть ближний и дальний. Ближний (верхний) — СТОП, дальний (нижний) — ГАБАРИТ.
Подпаиваем «анод» лампы (провод по окружности) к стабилизатору, еще раз проверяем, впаиваем стабилизатор в верхний торец лампы (катоды светодиодов). Теперь 4-мя U-образными скобами припаиваем нижние площадки (через одну) к цоколю, не замыкая цоколь с «анодом»!
Результат изготовления приведен в таблице.
Вариант 1 | Вариант 2 | |||
Тип светодиодов | 5050 | 5630 | ||
Кол-во светодиодов | 40 (8*5) | 24 (8*3) | ||
Диаметр (по верху), мм | 29 | 29 | ||
Длина общая, мм | 56 | 50 | ||
Режим | «габарит» | «стоп» | «габарит» | «стоп» |
Ток при 12В, мА | 40 | 200 | 40 | 280 |
Ток при 13В, мА | 62 | 310 | 56 | 400 |
Ток при 14В, мА | 85 | 380 | 70 | 540 |
Ток при 15В, мА | 108 | 350-380 | 85 | 540-600 |
Напряжение начала стабилизации тока, В | 13,5 | 14-14,4 | ||
Pпотр (макс), Вт (при 15В) | 1,62 | 5,7 | 1,28 | 9 |
*При нагреве конструкции (светодиодов и стабилизатора) ток стабилизации уменьшается.
Размеры ламп получились чуть болше стандартных (по диаметру — на 4 мм), а на светодиодах 5050 длинее на 6 мм, но у меня встали без проблем.
При установке в автомобиль видно, что WarmWhite 5630 габарит-поворот в режиме габарита светит ярче, а в режиме поворотника — нормально. Т.е нужно увеличивать резистор R6-R7, чтобы была более заметна разница при переключении (на фото вверху — режим габарит, внизу — поворот/аварийка).
Задние габариты/стопы не фотографировал, но могу сказать, что мне субъективно у собраной на красных светодиодах лампе яркости не хватает. Но у красных светодиодов приятнее свечение, что на мой взгляд лучше, чем ставить белые и надеяться на светофильтр.
P.S. Светодиодные лампы отходили с весны до осени (в смысле, что летом по жаре) без приключений. Машинку не ругайте, она свое отъездила честно, но к сожалению осенью улетела в лучший мир…, оставив лампочки на память.
Собственно «колхозить» конструкцию из светодиодов не обязательно, вставить такой стабилизатор в уже готовые светодиодные лампы, чтобы стабилизировать ток и продлить им срок жизни, если конечно сама конструкция (сборка) светодиодов сделана качественно.
Ни гвоздя, ни жезла!
Файлы:
Платы (.lay) и симуляция в Proteus Расчетка (формат Excel)
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? | |
31 | 9 | 8 |
Блок управления ДХО
Самым надёжным и наиболее простым является вариант подключения ДХО без реле, но с использованием специального блока управления ходовыми огнями. Он обеспечивает включение ДХО после запуска двигателя, гарантирует безопасную работу, защищает от перегрузок и может быть установлен на авто с любым типом ламп, включая светодиодные.
К сожалению, среди всего разнообразия промышленно изготавливаемых блоков ДХО подавляющая часть не соответствует ГОСТу и имеет посредственное качество сборки.
Касается это, в первую очередь, продукции с AliExpress, которая не соответствует требованиям практически по всем моментам.
Среди всего многообразия можно отметить всего 2 варианта: российский блок управления ДХО DayLight+ и немецкую продукцию от Philips и Osram. Блок управления DayLight+ разработан русским радиоинженером Исаченковым Фёдором с учетом всех особенностей бортовой сети автомобиля и обладает рядом положительных моментов:
- имеется встроенная стабилизация напряжения;
- полное соответствие ГОСТу;
- максимальная долговременная мощность нагрузки составляет 36 Ватт (для ДХО требуется значительно меньше);
- простейшая схема подключения.
Помимо вышеописанных моментов блок DayLight+ является универсальным и подходит на все автомобили с бортовой сетью 12 вольт, а также обладает хорошим качеством сборки и высокой степенью защиты от влаги и пыли. Немецкая продукция от Philips и Osram также обладает всеми вышеописанными преимуществами блока DayLight+, однако поставляются немецкие блоки управления только совместно с фарами дневных ходовых огней и обладают более высокой стоимостью.