Прорыв в организации оптического обеспечения современного автомобиля — лазерные фары


Для интересующихся развитием современных автомобильных технологий лазерные фары, принцип работы которых основан на люминофорном свечении, уже не являются диковинкой. Более того, уже стала известной так называемая адаптивная оптика на базе этой разработки. Как же устроены лазерные фары будущего, по какому принципу они работают, сколько стоят, и за что потребитель платит такие деньги – кратко и доступно рассказано в этом материале.

Характеристики

Лазерные фары — следующий шаг развития в автомобильной светотехнике, которые в скором времени заменят практически полностью существующие классические виды фар (ксеноновые или галогенные). Такой тип освещения существенно отличается от солнечного и всех искусственных источников. Несмотря на дальность освещения в 500-600 метров, он безопасен для глаз и не мешает другим участникам движения, так как флуоресцентный материал создает белое свечение, которое максимально приближено по цвету к дневному свету, а это значит, что оно не способно ослеплять или мешать движению.

Использование таких фар позволяет экономить электроэнергию в 2-3 раза, если сравнивать с теми же самыми диодными, лазерные компактны (размер около 10 микрон), благодаря чему, фары на машине стали изготавливать намного миниатюрнее, сохраняя при этом эффективность.

Лазерные фары безопасны для глаз

Принцип работы

Данное устройство берет за основу работу обычной противотуманки. Главной задачей такой фары является то, что на нее не опадают осадки, потому что оптика находится в неудобном положении – ниже линии тумана.

Принцип работы лазерных фар точно такой же: они, можно сказать, учитывают расположение изморози. Свет ложится прямо на дорогу красной полоской, сигнализируя для остальных водителей. Несмотря на то, что в качестве света выступают светодиоды, благодаря которым работает лазер, фары являются не источником освещения, а элементом энергообеспечения.

Неважно какова фара, внутри нее атомы активного вещества потребляют некоторое количество энергии, преобразовывая его в фотоны. Например, устройство лампы накаливания имеет вольфрамовую нить, которая при нагреве испускает свет. Этот принцип модифицировался и преобразился. Лазерные фонари могут обеспечить такую мощность, которая в несколько раз превысит мощность базовых ксеноновых ламп (автор видео — Techno Drive).

Устройство и принцип работы лазерных фар

Необходимо начать с того, что такие фары правильней всего называть лазерно-люминофорными, а не просто лазерными. Конструкция данного типа не является сложной: она состоит из нескольких лазерных диодов, которые, в свою очередь, подсвечивают люминофор, преобразовывающий получаемую энергию в световое излучение, благодаря чему и образовывается мощный пучок, который в 1000 раз интенсивней даже диодного. Также получаемый луч является когерентным и монохромным, а это значит, что у него постоянная длина волны и разность фаз. Его мощность равна 170 люменам.

Изначально луч голубого цвета, и для получения яркости ему необходимо пройти через люминофорное покрытие, которое рассеивает пучок лазера, образуя мощный свет.

Поэтому в данном случае важно понимать, что сам лазер не освещает дорогу, а только вырабатывает нужную энергию.

Головной лазерный свет работает во взаимодействии с компьютером, который за счет специальных датчиков контролирует процесс появления встречных машин и пешеходов и позволяет избегать их ослепления. Система Dynamic Light Spot обнаруживает при движении преграды, обращая внимание водителя на них с помощью более интенсивного света, что помогает заранее подготовиться к необходимым маневрам и действиям.

Не является сложной конструкция данного типа фар

Фары будущего: какие круче, лазерные или диодные?

За матричную светодиодную оптику Mercedes-Benz CLS нужно доплачивать 112 тысяч рублей. Неужели они так классно светят, чтобы выкладывать такие деньги? В 2011 году «Авто Mail.Ru» по приглашению Philips посетил немецкий Ахен, где инженеры компании рассказали об эволюции автомобильного света (подробности — в нашем материале «Фары будущего: «ксенон», «галоген» или светодиоды?»). А теперь — новое приглашение. Что сейчас покажут немцы? Ночь, пригород Барселоны, журналисты закладывают… кусочки карбида внутрь металлического бочонка. Зачем?! Всё просто: бочонок — часть автомобиля позабытой сегодня марки Reyrol 1909 года выпуска, и таким образом мы зажигаем фары. Зажигаем — в прямом смысле этого слова.

На этой фотографии отлично видна эволюция автомобильного освещения. Автомобили (нижнее фото слева направо) по типу оптики: ацетиленовые горелки, простые электрические лампы, галогеновые лампы (две машины подряд), галогеновые лампы Philips X-tremeVision, матричные светодиодные фары

Сначала нужно открыть краник ацетиленового генератора (того самого бочонка), чтобы вода начала капать на карбид кальция. В результате взаимодействия карбида и воды образуется ацетилен, который по трубочкам доходит непосредственно до керамической горелки, упрятанной внутри фары. Стоим, ждём — процесс этот небыстрый. Пора? Открываем стекло фары, чиркаем спичкой — сначала появляется едва видимый огонёк, который вскоре гаснет. Опять ждём и снова подносим спичку. Разгораясь, маленький язычок пламени быстро становится довольно ярким источником света. Поехали! Насколько путь, освещаемый ацетиленовой горелкой, светел? Говорят, что удачные образцы, оснащённые параболическими отражателями, могли пробивать тьму метров на триста. Но то ли оптика Reyrol не слишком совершенна, то ли современники приукрашивали действительность, но двигаться на машине начала прошлого столетия по ночным дорогам просто небезопасно. Не видно ни-че-го! А набежит сильный ветер и огонёк внутри фары попросту задувает — вставай, разжигай заново. И каждые четыре часа заправляй генератор карбидом и прочищай горелку от нагара…

Если ацетиленовые горелки на Reyrol 1909 года (слева сверху) почти не освещают дорогу, то электрические лампы Packard образца 1934 года (справа сверху) способствуют безопасному вождению куда больше. У SEAT 800 1964 года (слева внизу) — уже эффективная асимметричная оптика на основе «галогенок», а фары Daimler DS420 1968 года вообще светят очень недурно, по качеству света напоминая современные

С электрическим светом, конечно, проще. В 1912 году, когда появились вольфрамовые нити накаливания вместо угольных (последние боялись тряски), ацетиленовые лампы разом уступили место лампам накаливания. На роскошном седане марки Packard 1934 года стоят именно такие, причём — с двумя нитями накаливания: для дальнего и ближнего света отдельно. (К тому времени уже был придуман рассеиватель — покрытое линзами стекло фары, отклоняющее свет лампы). Но водитель снова «подслеповат»! Паккардовский «дальний» гораздо слабее, чем «ближний» любой современной машины. И только пересаживаясь на Daimler DS420 родом из конца шестидесятых, начинаешь чувствовать себя уверенно. Слава «галогенкам»! Кстати, такие фары рано отправлять на свалку истории — в будущем галогеновые лампы продолжат ставиться на массовые автомобили, поскольку могут светить на уровне «ксенона». В качестве примера инженеры Philips показали лампы X-tremeVision, которые светят на 130% ярче и излучают на 20% более белый свет (3700 К), почти догоняя «ксенон» (4300 К), а также модель Philips WhiteVision, излучающая на 60% больше света, притом света «ксенонового» (4300 К).

По прогнозам экспертов, к концу 2030-х примерно половина выпускаемых машин сохранит «галогенки», как простой и дешёвый источник света! Неудивительно, что инженеры продолжают совершенствовать галогеновые лампы, улучшая характеристики нити, увеличивая давление разрядного газа и повышая качество покрытия и кварцевого стекла

Но самый совершенный автомобильный свет сегодня — это матричные светодиодные фары. И это настоящий шедевр инженерного искусства! За который нужно выложить 112 тысяч рублей — столько стоит опция Multibeam для Mercedes-Benz CLS. За что просят такие деньги? В каждой фаре имеются секции: дневных ходовых огней, статичного ближнего света, активного ближнего света средней дальности, дальнего света, а также бокового освещения. Управляет всем этим хозяйством компьютер, который получает данные от камеры, датчиков освещения и GPS-навигации. Такие фары потребляют втрое меньше энергии, нежели ксеноновые, а их цветовая температура выше: 5000 К вместо 4300 К, поэтому свет белее, напоминая естественный дневной (6500 К), отчего глаза гораздо меньше устают. Как такового жёсткого разделения на ближний, дальний и «противотуманный» режимы больше нет, поскольку электроника сама регулирует форму светового пучка. Вот как это работает. С дневными ходовыми огнями всё понятно — их задача обозначать машину днём. Секция статичного ближнего света освещает дорогу прямо перед машиной, выполняя роль «противотуманок»…

Так устроена светодиодная фара Mercedes-Benz CLS: 1. Дневные ходовые огни и сигнал поворота. Также данная секция выполняет функцию «приветственного света», который освещает хозяину дорогу от машины и обратно. 2. Активный ближний свет. Эта секция, состоящая из четырёх светодиодов, может поворачиваться на угол до 12º, а также выполнять роль «среднего света» (между «ближним» и «дальним»). 3. Активный дальний свет. Каждый из 24 светодиодов может включаться, выключаться, а также менять яркость, притом каждый светодиод имеет 255 стадий яркости. 4. Статичный ближний свет. Три секции из восьми светодиодов (2+2+4) освещают дорогу прямо перед автомобилем и обочины, выполняя роль противотуманных фар. 5. Боковой свет. Два светодиода включаются только перед поворотами и боковыми развязками, притом могут включаться секции либо одной, либо обеих фар

А ближний свет? Он особенно хорош при прохождении поворотов, которые система распознаёт при помощи стереокамеры, сканирующей дорожную разметку, и данных от навигации. Перед виражом подключаются секции бокового освещения, а сам пучок света отклоняется (соответствующая группа диодов поворачивается на угол до 12º), притом незадолго до того момента, как водитель начнёт поворачивать руль. Чтобы заранее подсветить выход из виража, в прямолинейное положение фары возвращаются также заранее. На круговых развязках «умная оптика» вообще старается осветить весь круг. Но интереснее всего работает «дальний». Его можно вовсе не выключать за городом! Пучок, формируемый лучами двух дюжин светодиодов каждой фары, постоянно меняет свою форму, чтобы максимально освещать дорогу, но не слепить других водителей: когда впереди появится встречный или попутный автомобиль, система мгновенно приглушит те светодиодные элементы, которые могли бы помешать остальным. Сообразительности системы хватает, чтобы одновременно отслеживать до восьми машин. «Дальнобойность» также впечатляет — светит светодиодный «дальний» аж на 485 метров.

В повороте светодиодные матричные фары будто «заглядывают» внутрь виража. При этом освещаются также обочина и часть встречной полосы, но попутная машина — «в тени». На круговых развязках (внизу слева) работает рефлекторы бокового света обеих фар, чтобы расширить освещаемую зону и видеть не только въезд на развязку, но и выезжаающие слева и «из-за круга» машины. Вся дорога ярко освещена (внизу справа), но та область, где движется встречная машина, остаётся тёмной, так как система включает, выключает или меняет яркость отдельных светодиодов

Кстати, у Audi оптика вдобавок оснащена инфракрасной системой ночного видения, а потому фары умеют подсвечивать пешеходов: если система ночного видения за 250 метров перед машиной заметит человека, фары, не ослепив, поморгают «живому препятствию» и «нарисуют» освещённую дорожку, куда следует отступить. В остальном, «аудюшная» система Audi Matrix LED похожа на мерседесовский Multibeam, хотя матричные фары «Мерседеса» меняют световой пучок плавнее, чем светодиоды Audi, так как для каждого отдельного диода предусмотрено 255 уровней яркости против 64. Увы, но лазерную оптику Philips не показал: инженеры пока только работают над этим направлением. Но почему? Ведь именно за лазерами — будущее! Или нет? «Автомобильной лазерной оптики не существует», — огорошил публику Матиас Хагедорн, лектор по современным системам освещения. Как так, если лазерные фары получили Audi R8 LMX и BMW i8? Но Хагедорн невозмутимо продолжил: «В существующих конструкциях лучи нескольких лазеров только попадают на фосфорную пластину, люминофор, которая испускает пучок белого света. Поэтому правильно называть такую технологию лазерно-люминофорной!»

Трудно поверить, но светодиодные фары флагманского S-класса устроены проще, чем оптика модели CLS: фары большого Mercedes-Benz тоже наводят тень на встречную (или попутную) машину, но по другому принципу — при помощи специальной заслонки, которая перемещается, сопровождая приближающийся автомобиль

Таким образом, лазер является только источником энергии, но не источником света. И если сейчас существует «ближний» и «дальний», то лазерно-люминофорная оптика — это «сверхдальний»: такой свет включается на скорости выше 60 км/ч и светит на 500-600 метров. Впечатляет? Честно говоря, за 15 тысяч евро (по нашей информации, именно столько стоят «лазеры») хотелось бы большего, так как те же полкилометра освещают и матричные светодиодные фары, а новое поколение LED-оптики будет более «дальнобойным» и более функциональным — в секции дальнего света будет не 24, а 84 диода. Поэтому выводы таковы. Будущее — за светодиодными фарами. Однако если инженеры научат «лазеры» светить дальше, то именно такие фары станут прерогативой сверхбыстрых суперкаров. Увы, но совершенная матричная LED-оптика из-за дороговизны на некоторое время останется приметой лишь автомобилей премиум-класса. Зато массовые машины получат пускай статичные, но светодиоды, так как Philips (их оптикой оснащён каждый третий автомобиль на планете), уже создала доступные световые решения. Прощай, «ксенон» и «галоген»?

Audi R8 LMX выпущена тиражом 99 экземпляров. Именно за версию LMX нужно доплатить 35 тысяч евро: за эти деньги владелец получит более мощный двигатель (570 л.с. против 550 л.с.), углепластиковые детали кузова и, разумеется, уникальную лазерную оптику. Четыре лазерных диода мощностью 1,6 Вт подсвечивают люминофор, свет от которого, пройдя через систему отражателей, падает на дорогу. Лазерный свет обладает дальностью до 600 м, тогда как светодиодный дальний (обычный, не матричный) высвечивает дорогу на 300 м, а ближний — на 150 м

Напоследок ответим на популярный вопрос: стоит ли переплачивать за матричные светодиоды? Ночной тест-драйв показал, что активные фары — штука отличная. Особенно для наших дорог, где нужно напряжённо всматриваться вдаль, выискивая колдобины, ночных пешеходов и сломавшиеся грузовики без фонарей и знаков аварийной остановки. Хотя обычные, неактивные, диоды тоже светят прекрасно…

Источник

Преимущества и недостатки

Преимущества:

  • Компактность конструкции;
  • Экономия потребления энергии (расходует почти на 30% меньше, чем классические источники);
  • Высокая пространственная когерентность;
  • Большая (около 600 метров) и четкая дальность освещения, благодаря использованию высоких технологий;
  • Исключена возможность ослепления, так как направление света сфокусировано в одну точку;
  • Автоматическое отключение диодов, если в область освещения попадает человек или любое живое существо;
  • Большая интенсивность и мощность освещения;
  • Взаимодействие с пешеходами;
  • Указание габаритов машины при проезде в стесненных условиях;
  • Ограничение направленности пучка света благодаря микроконтроллерам.

Такие фары экономны в потреблении электроэнергии

Недостатки:

  • Высокая стоимость. На сегодняшний день данный тип является самым дорогим автомобильным источником света.
  • Хрупкость конструкции.

Эксклюзив во всем

На заказ лазерные фары предлагают для BMW i8. Именно на этой модели они дебютировали в 2013 году. Как это возможно, если продажи фар только начинаются? Все просто: в июне 2013 года лазерные фары были в эксклюзивном порядке установлены на восьми первых серийных экземплярах немецкого спорткара, переданных счастливым владельцам в ходе специально устроенной в Мюнхене церемонии. В техническом плане решение мало чем отличается от того, что мы видели на Audi R8, да и поставщик у BMW тот же — Osram. На i8 лазерные фары дальнего света тоже установлены не вместо традиционных, а в дополнение к ним, и включаются лишь при наличии соответствующих условий. Ну а вам мы предоставляем полную свободу в выборе выражений, уместных в отношении цены опции -9750 евро (в Европе).

Какие лучше выбрать

На сегодняшний день лазерные фары установлены только на автомобилях премиум-класса и не поступают в продажу в виде отдельной запчасти, основная причина этому — высокая себестоимость, а также, очень дорогая цена замены или ремонта.

Поэтому, безусловно, те, кто смогут их себе в будущем позволить, не пожалеют о покупке ни разу, ведь это будет являться самым оптимальным решением.

А пока, при выборе света для своего автомобиля, рекомендуется выбирать диодные фары, которые имеют наилучшие технические характеристики и приемлемую стоимость, полностью соответствующую качеству.

Что же касается ксеноновых и галогенных, то такие типы давно уже изжили себя, имеют множество недостатков, которые выльются водителю в множество проблем и денежных затрат.

Фары ближайшего будущего: ксенон, светодиоды или лазер

Сейчас сложилась уникальная ситуация: на рынке есть автомобили с четырьмя разными технологиями головного света. Выясняем, какие лампы перспективнее и эффективнее — традиционные, ксеноновые, диодные или лазерные.

В нашей прошлой публикации мы проследили долгий путь автомобильного освещения от керосинок и ярких карбидных фонарей до привычных нам галогенных ламп с рассеивателями.

Но уже в 90-е годы стало понятно, куда двигаться дальше. А двигаться можно было в сторону снижения энергозатрат и повышения яркости. Ведь даже линзованная оптика с обычными лампами накаливания уже не отвечала современным требованиям. И тогда на борьбу с темнотой выдвинулись газоразрядные источники света, давно используемые в стационарном освещении.

Ксенон: мощно, сложно и дорого

В народе за такими фарами прочно закрепилось название «ксенон», хотя к ксеноновым дугоразрядным лампам, как это ни странно звучит, они отношения не имеют. Огромные мощности и удачный спектр при плохом КПД у дугоразрадных ламп оказались не нужны, а то, что мы привыкли называть «ксеноном» на самом деле является металлогалогенной лампой, внутри которой горит смесь газов. В ней иногда используется газ ксенон как один из ингредиентов, но зачастую обходятся и без него.

Эффективность такого решения более чем достаточная — 80–100 люменов на каждый ватт мощности, а спектр излучаемого света оказался одним из лучших и наиболее естественных. Для сравнения: обычная «галогенка» дает 13-15 люменов на ватт, газонаполненная — около 10, а обычная вакуумная — около 8.

Никакие другие типы газоразрядных ламп не смогли составить им конкуренции, даже натриевые лампы с отдачей до 200 люменов на ватт не прошли строгий отбор из-за ограниченного светового спектра. Их желтый свет мог не отражаться от некоторых поверхностей, и такие предметы казались бы темными, а с безопасностью на дороге не шутят.

Основных сложностей при внедрении газоразрядных ламп было две. Во-первых, для того чтобы зажечь дугу внутри колбы, требуется напряжение порядка 25–50 тысяч вольт. Во-вторых, внутри колбы светится весь объем газа, и этот свет надо очень четко направлять в нужную сторону.

Вторую проблему отлично решила прожекторая (линзованная) оптика, о кторой речь уже шла выше. Ну а развитие электроники успешно справилось с первой проблемой. В 1991 году компания Hella, кстати, начинавшая еще с выпуска ацетиленовых ламп, начала продавать первые комплекты серийного «ксенона» для машин. Это была очень недешевая опция для BMW 7-й серии в кузове E32.

В отличие от обычных ламп, которые запитаны непосредственно от бортовой электросети, «ксенон» питается через так называемый балласт или же блок розжига.

Как мы уже говорили, при старте газоразрядной нужен импульс напряжения в 25 тысяч вольт и выше, а после запуска необходимо точно выдерживать ток. Просто удержание напряжения бесполезно — лампа сильно меняет сопротивление с прогревом. Так что блок розжига — очень сложная и дорогая часть лампы, на нем лежит ответственность и за ее быстрый «поджиг», и за ее долговечность ( при колебаниях тока выгорают электроды внутри колбы, и лампа идет под замену).

Как мы уже говорили, газоразрядные (то есть «ксеноновые») фары очень эффективны и выдают 80–100 люменов на ватт. При стандартном 35-ваттном энергопотреблении такая лампа дает очень много света. Кроме того, она греется очень слабо и не имеет хрупкой нити накаливания, а значит, срок ее службы выше и она не боится вибраций.

Самые высокие значения КПД относятся к источникам очень «холодного» света со световой температурой выше 5 500 кельвинов — это характерное голубоватое свечение. Лампы с более комфортной для глаза световой температурой в 3 500 или 2 700 кельвинов имеют меньший КПД, но все равно между ними и обычными лампами накаливания пропасть в эффективности и мощности светового потока.

Обратная сторона всех этих плюсов — высокая стоимость оборудования, которую производителям пока не удалось «победить». Например, оригинальный блок розжига для Volvo S80 II обойдется в 14–17 тысяч, а для Volkswagen Passat B6 — в 17–18 тысяч. Причем более дешевые аналоги существуют далеко не всегда.

Не стоит забывать и про обязательный гидрокорректор уровня фар, который автоматически меняет «угол атаки» фар в зависимости от наклона кузова, чтобы не слепить встречных автомобилистов, проезжая неровности. А также про омыватель фар, без которого «ксенон» использовать нельзя, так как сквозь грязь сильные лучи «газоразрядного» света некорректно преломляются и светят в разные стороны. Все это не позволяет технологии стать массовой. На дешевые автомобили по-прежнему ставят обычные «галогенки».

Источник

Mersedes тоже выбрал матрицу

В 2010 ГОД У Mercedes CLS второго поколения стал первым в мире автомобилем, у которого в фонарях и фарах стояли только светодиоды. После недавнего рестайлинга штутгартский седан обзавелся опцией Active Multibeam Led — такие же матричные фары, как у Audi, и работают они по тому же принципу. Управление фарами осуществляется раздельно, что позволяет точно контурировать освещаемые и неосвещаемые участки перед автомобилем. Светодиоды корректируют размеры темных пятен очень быстро и точно, при этом левая и правая фары работают независимо друг от друга. Каждую секунду электронные блоки сто раз рассчитывают оптимальную конфигурацию светового пятна. Исходную информацию система получает от камеры, размещенной в верхней части ветрового стекла. Как правило, система Active Multibeam Led предлагается в качестве опции. Исключение составляют модификации AMG, штатно оснащаемые матричными фарами.

Автомобильный свет развивается в строго устоявшихся направлениях, которые редко меняются. На сегодняшний день особый интерес у большинства водителей вызывает светодиодная оптика. У нее масса достоинств, которые не позволяют приблизиться к этому сегменту альтернативным решениям. И все же технологические разработки не стоят на месте, постепенно набирает популярность совсем другая концепция светоподачи. Это лазерные фары, которые привнесли принципиально новые качества в организацию оптического обеспечения современного автомобиля.

Производители

Существует две категории производителей лазерных фар. С одной стороны, такие технологии вполне закономерно осваивают непосредственно изготовители автомобилей. Наиболее успешные разработки в сегменте демонстрируют компании Audi и BMW. Правда, в массовых моделях лазерная оптика пока фигурирует редко — такой оснасткой чаще обзаводятся в качестве опционального решения. И с другой стороны, лазерные фары выпускают передовые разработчики светодиодной техники. Можно отметить фирмы Philips, Osram и Hella, которые занимают лидирующие позиции в области проектирования новейших Что особенно интересно, в обеих категориях компании занимают узкоспециализированные ниши, продвигая уникальные технологические решения.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]