Устройство подвески автомобиля – описание и назначение основных элементов


Подвеска – как много в этом звуке… Во всех смыслах. Что что, а звучать она умеет. В зависимости от конструкции, подвеска может быть простой, а может иметь сложнейшую конструкцию. Точно так же она может быть и надежной, и наоборот, «сыпаться» после каждой тысячи километров.

За время своего существования подвеска автомобиля прошла огромный эволюционный путь. Когда-то рессорная система считалась верхом прогресса, а сегодня конструкцию современных подвесок можно можно сравнить с произведением искусства – настолько это совершенные, сложные и дорогие устройства.

Назначение

Подвеска в автомобиле необходима для смягчения ударов, которые воспринимают колеса от неровностей дорог. Благодаря ей, кузов машины буквально подвешен над поверхностью на упругих элементах ходовой.

Благодаря этому обеспечивается плавность хода автомобиля и его управляемость в сложных условиях рельефа. Другими словами, она нужна для движения авто с определенным уровнем комфорта, без тряски и вибрации.

Давайте рассмотрим, что будет происходить с автомобилем, если у него не будет подвески, а колеса жестко соединены с кузовом. В этом случае удары от колеса будут полностью передаваться на кузов, немного смягчаясь шинами.

Если внести в схему подвески упругую пружину, то толчок на кузов значительно смягчится. При этом кузов будет по инерции еще долго по времени раскачиваться. Это делает управление машиной трудным, а движение опасным.

При таком устройстве, существует большая вероятность «пробоя» – когда момент сжатия пружины подвески совпадает с ударом от дороги. Есть такой термин у автомобилистов: «Пробить подвеску». Чтобы исключить этот эффект, в схему добавляют демпфирующий элемент – амортизатор. Он предназначен для гашения колебания кузова при работе пружин.

Устройство подвески

Автомобиль имеет переднюю и заднюю подвеску. О каждой из них будем говорить отдельно, потому что они конструктивно отличаются друг от друга.

Но в каждой из них есть обязательные элементы – пружины и амортизаторы.

На старых автомобилях, а также на грузовом транспорте задняя подвеска имеет рессоры вместо пружин. Это обусловлено:

  1. Дешевизной её изготовления;
  2. Применимостью в зависимой подвеске;
  3. Ремонтопригодностью и меньшим количеством деталей ходовой;
  4. Рессоры выносливее, чем пружины.

Амортизатор

Они бывают трех типов:

  1. Масляные;
  2. Газовые;
  3. Комбинированные – газомасляные.

Первый тип больше подходит для спокойной и комфортной езды. Поэтому они устанавливаются в гражданских автомобилях. В современных машинах встречаются третий тип – комбинированные газомасляные амортизаторы.

Второй тип применяется в спортивных машинах. Он предназначен для минимизации кренов кузова в быстрых поворотах. Когда авто проходит поворот на большой скорости, её кузов сильно крениться. При этом внешнее колесо поднимается над дорогой, теряя сцепление. Чтобы увеличить скорость и безопасность прохождения виражей, применяют газовые амортизаторы. Они более жесткие, менее подвержены инерции, и быстрее придавливают колесо к асфальту.

Как он работает

Амортизатор подвески автомобиля представляет собой цилиндр, в который помещен поршень. Они не связаны друг с другом и могут независимо двигаться. В этом поршне выполнены отверстия. Цилиндр заполнен специальной жидкостью. Верхним своим концом он крепится к кузову машины. Нижним, к рычагу подвески.

При ударе колеса о яму, оно резко поднимается. Поршень в цилиндре сжимается, но это происходит не резко. Ему препятствует масло, которое через маленькие отверстия в поршне не успевает быстро перетекать через них. В результате поршень замедляет свое движение, происходит демпфирование удара, его смягчение.

При работе подвески на разжатие, происходит обратный процесс. Поршень возвращается вверх, масло перетекает обратно и замедляет скорость поднятия поршня. Таким образом, не происходит резкого скачка кузова автомобиля, когда разжимаются пружины подвески.

При неисправном амортизаторе кузов машины будет «скакать», как дикая лошадь при проезде любых неровностей, даже «лежачих полицейских».

Более подробную информацию об амортизаторах можно почитать в блоге «Автолюбитель со стажем». Там описаны все типы амортизаторов, их достоинства и недостатки, принцип работы каждого из них. Это не реклама, рекомендую.

Амортизатор в паре с пружиной называется пружинной стойкой. Ею оснащены все современные автомобили с передним приводом.

Рычаги

При помощи рычагов подвески колеса крепятся к ходовой части. Они передают к силовым элементам кузова продольные и поперечные усилия. Контролируют перемещение колеса во время движения автомобиля.

Сколько рычагов в подвеске

В зависимости от типа подвески, количество рычагов может доходить до восьми штук спереди. Еще они могут быть сзади. Такой тип называется «многорычажка».

В недорогих моделях машин обычно применяется подвеска «Макферсон» – один рычаг на сторону с пружинной стойкой. Такой тип получил большое распространение в современных авто. Это обусловлено простотой конструкции, комфортом и дешевизной.

В классических автомобилях ВАЗ в передней подвеске два рычага на одну сторону – верхний и нижний. Это двух рычажная подвеска. Вместо пружинной стойки используется схема с раздельными амортизаторами и пружинами, они не собраны в единую конструкцию.

В зависимой подвеске рычагов нет вообще. При такой схеме противоположные колёса одной оси соединены балкой. Поэтому любое горизонтальное движение одного колеса отражается на поведении другого, они зависят друг от друга.

История появления

Попытки сделать передвижение транспортного средства мягче и комфортнее предпринимались еще в каретах. Изначально оси колес жестко крепились к корпусу, и каждая неровность дороги передавалась сидящим внутри пассажирам. Повысить уровень комфорта могли лишь мягкие подушки на сиденьях.

Зависимая подвеска с поперечным расположением рессоры

Первым способом создать упругую «прослойку» между колесами и кузовом кареты стало применение эллиптических рессор. Позже данное решение было позаимствовано и для автомобиля. Однако рессора уже стала полуэллиптической и могла устанавливаться поперечно. Автомобиль с такой подвеской плохо управлялся даже на небольшой скорости. Поэтому вскоре рессоры стали устанавливать продольно на каждое колесо.

Развитие автомобилестроения повлекло и эволюцию подвески. В настоящее время насчитываются десятки их разновидностей.

Стабилизатор поперечной устойчивости

Он снижает крены кузова автомобиля и улучшает его управляемость.

Он выполнен в виде русской буквы «П», на картинке хорошо видно. Представляет собой стальной прут с большой упругой деформацией. Простыми словами – его взять на излом тяжело, он всегда будет стремиться принять начальную форму.

Он имеет четыре точки крепления. Противоположными краями он зафиксирован за рычаги подвески. Центральной части крепится к кузову.

Как он работает

При появлении крена, одна часть кузова поднимается, другая опускается – это логично. Часть стабилизатора, которая закреплена на силовом элементе кузова, поднимается и выкручивает стабилизатор.

За счет большой упругости он поднимает свою противоположную точку крепления, а вместе с ней кузов. Таким образом он пытается стабилизировать его в поперечном положение относительно дороги.

Второй случай, когда он работает – наезд одним колесом на яму или кочку. Рассмотрим вариант с кочкой на дороге.

В такой ситуации одно колесо движется вверх относительно кузова. В этом случае прут стабилизатора испытывает упругую деформацию не точкой крепления к кузову, а к рычагу подвески. Стремясь принять исходную форму, он вторым своим краем поднимает противоположное колесо и опускает кузов. Кузов автомобиля прижимается к земле, снижается центр тяжести и машина становиться устойчивее.

Кольцевые рессоры

Кольцевые рессоры применяются преимущественно в случаях, когда требуется обеспечить высокую жесткость в малых габаритах (например, в некоторых конструкциях поглощающих аппаратов автосцепки). Достигается это за счет рационального использования материала колец и наличия сил трения между кольцами. Для обеспечения стабильного трения и предотвращения заклинивания применяется смазка.

Кольцевые рессоры (рис. 4, а) представляют собой жесткий упругий элемент для восприятия сжимающих осевых нагрузок. Кольцевая рессора состоит из набора термически обработанных колец, соприкасающихся коническими поверхностями Под действием нагрузки Р, несмотря на значительные силы трения на конусных поверхностях колец, препятствующие их относительному скольжению, они вдвигаются одно в другое. Кольца, передавая усилия своими коническими поверхностями, деформируются: внешние подвергаются упругому растяжению, а внутренние – упругому сжатию. В результате общая высота рессоры H уменьшается. После снятия нагрузки, так как угол конусности β больше угла трения р = arct μ (где μ – коэффициент трения скольжения), рессора восстанавливает свои прежние размеры за счет сил упругости. Взаимное перемещение колец обычно незначительно (1,5–4,5 мм), вследствие чего для получения достаточного прогиба необходимо иметь большое количество колец.

Рис. 4 – Кольцевая рессора и диаграмма ее работы

Величина работы сил трения между кольцами (рис. 4, б), совершаемой при загружении рессоры, зависит от точности их изготовления и наличия смазки.

Сайлентблоки

Все подвижные элементы подвески крепятся к кузову через резиновые вставки – сайлентблоки. Они гасят вибрации от одной детали к другой. Представляют собой две втулки из металла, между ними находится резиновый элемент. За счет его пластичности гасятся колебания при работе движущихся частей ходовой и обеспечивается их подвижность.

Например, если бы в месте крепления рычага к раме не было сайлентблока, то рычаг тёрся бы о раму. Такое соединение повышало износ металла и издавало жуткий скрип при движении автомобиля. Кроме того, любые удары по колесу от дороги передавались на кузов, вы слышали бы стуки. Это быстро разбивало бы крепёжный узел.

Поэтому, при самостоятельной диагностике подвески автомобиля, обращайте внимание на состояние сайлентблоков. Они не должны иметь трещин и повреждений. Бывают случаи, когда внутренняя втулка отслаивается от резины, начинает болтаться и стучать.

Конструкции упругих элементов

Многолистовые рессоры являются наиболее функциональным и простым по конструкции упругим элементом. Одновременно рессоры выполняют функции упругого элемента, направляющего и демпфирующего устройства.

Недостаток листовых рессор — высокая металлоемкость. Энергия упругой деформации (потенциальная энергия деформации), отнесенная к массе, у листовой рессоры в 2… 3 раза меньше, чем у пружин и торсионов. В настоящее время применяют в основном полуэллиптические рессоры, симметричные и несимметричные.

Несимметричные рессоры с более короткой (более жесткой), чем задняя часть длиной передней части позволяют уменьшить «клевки» автомобиля при торможении, частично выполняя, таким образом, и функции стабилизатора продольной устойчивости. Рессора (рис. 1, а) состоит из собранных вместе листов одинаковой ширины, но разной длины.

Кривизна листов увеличивается по мере уменьшения их длины. Толщина и профиль сечения листов (прямоугольный, параболический, трапециевидный) могут быть разными. Их выбор определяется характером распределения напряжений по длине листов и уровнем допустимых напряжений.

В каждом из листов рессоры имеются отверстия для центрального болта, которым листы стягиваются перед установкой. Лист или несколько листов, которыми рессора крепится к несущей системе, называются коренными.

Концы коренных листов дополнительно обрабатываются — формируется ушко (рис. 1, 6) или пробиваются отверстия для установки деталей крепления рессоры к раме (кузову) автомобиля одним из способов: кронштейнов для крепления с помощью пальцев или чашек резиновых опор. Для приближения конструкции рессоры к балке «равного» сопротивления, в которой напряжения изгиба в каждом сечении листов по длине равны, концы остальных листов могут оттягиваться (рис. 1, в) или обрубаться по трапеции.

Рис. 1. Многолистовая рессора

Малолистовые и однолистовые рессоры (рис. 2) в большей мере, чем многолистовые приближаются к форме балки равного сопротивления. Высота поперечного сечения h листа l рессоры в месте крепления к балке моста 3 с помощью стремянок 2 определяется из условия прочности при заданной нагрузке. При постоянной ширине b листа высота h его сечений по длине листа изменяется по параболе. Толщина концов из легированных сталей: хромомарганцевых — 50ХГ, 50ХГА, кремнемарганцевых 55ГС и кремниевых 60С2.

Рис. 2. Малолистовая рессора

Долговечность листовых рессор до настоящего времени остается меньшей долговечности других упругих элементов, даже при использовании специальных методов упрочнения металла и обработки поверхности листов. Кроме того, сложность создания независимой рессорной подвески, большая масса неподрессоренных частей и трение между листами рессоры являются причинами снижения показателей плавности движения.

Спиральные пружины (рис. 3) отличаются простотой конструкции и одновременно высокой удельной энергоёмкостью.

Рис. 3. Спиральная пружина

С учетом короткого и простого технологического цикла изготовления, пружины стали наиболее распространёнными упругими элементами в подвесках автомобилей. При создании пружины с переменным шагом витков обеспечивается прогрессивное изменение жесткости пружины. Достоинством такого упругого элемента является компактность, небольшая масса и удобство компоновки деталей подвески. Внутри пружины может быть размещён амортизатор или гидравлическая стойка подвески. Важно обеспечить неподвижность пружин относительно опор, для чего исполнение концов пружин или опорных витков в целом должны отвечать определенным требованиям.

Наименьшую относительную стоимость имеют пружины, концы которых обрезаны под прямым углом и поджаты. Более дорогим вариантом исполнения пружины является поджим и шлифование опорных витков до плоскости. Основное преимущество плоских опорных витков заключается в простоте, а значит легкости изготовления деталей опор пружин. Просты в изготовлении и недороги пружины, концы которых закручены внутрь пружины для образования опорной поверхности. Кроме уменьшения общей длины пружины , они обеспечивают простую установку на опорные поверхности. Недостатком таких пружин является невозможность установки внутрь амортизаторов.

Торсионы , наряду с пружинами и рессорами, широко применяются в качестве упругих элементов подвесок.

Торсион — это вал (стержень), работающий на кручение. Торсионные подвески при равной энергоёмкости обладают существенно меньшей массой упругого элемента по сравнению с рессорой и имеют лучшие компоновочные возможности подвески даже по сравнению с пружинными упругими элементами. Последнее преимущество особенно очевидно при проектировании подвески ведущих колес автомобиля. В подвесках автомобилей применяют торсионные валы с поперечными сечениями , показанными на рис. 4.

В основном сечение торсиона представляет круг или кольцо, в том числе разрезное (рис. 4, а, 6, в). В некоторых конструкциях стержень торсиона составляют из нескольких прутков (рис. 4, г) или полос одинаковой или разной ширины (рис . 4, д, е). Пластинчатые торсионы представляют набор полос равной длины с поперечным сечением, имеющим форму квадрата, в процессе работы подвергаемые закручиванию. Экономически целесообразно изготавливать пластинчатые торсионы из листов с одинаковыми размерами сечений.

Полосы требуемой толщины для наборных пластинчатых торсионов изготавливаются методом проката, что обеспечивает соблюдение жестких требований к точности размеров ширины и высоты профиля. Использование цилиндрических торсионов, имеющих в сечении круг или кольцо, в наибольшей степени соответствует требованиям эффективного использования материала упругого элемента в случае, когда длина стержня не ограничена конструктивным и параметрами.

Рис. 4. Сечения торсионов

Цилиндрические торсионы хорошо работают не только при однократных воздействиях с предельным уровнем напряжений, но при постоянно действующих напряжениях высокого уровня. Это обеспечивается упрочнением и шлифованием поверхности на рабочей длине торсиона. Исполнение концевых участков имеет для цилиндрических торсионов большое значение. Для передачи момента технологически и конструктивно целесообразно изготавливать шлицевые концы с мелким профилем. Такие поверхности могут быть получены накатыванием или нарезанием, что обеспечивает соосность концов торсиона.

Существенным достоинством торсионных подвесок является возможность сравнительно легкой регулировки высоты автомобиля или коррекции крена при неравномерной осадке упругих элементов. Поэтому во многих случаях производители используют относительно сложные конструкции крепления концов торсиона с большим числом деталей, но обеспечивающие бесступенчатое регулирование подвески. Исполнение концевых участков в этих случаях может быть разным, например, с квадратным или шестиугольным сечением.

Резиновые упругие элементы в подвесках автомобилей используются в качестве дополнительных упругих элементов, работающих на сжатие, кручение или сдвиг. Резиновые упругие элементы значительно дешевле и более технологичны в изготовлении, чем любые металлические упругие элементы. Для крепления резиновой рессоры сжатия 2 (рис. 5) используют металлическую втулку 1, устанавливаемую в пресс-форму перед вулканизацией.

Рис. 5. Резиновый упругий элемент

Многие производители автомобилей давно и успешно используют резиновые упругие элементы в конструкциях подвесок автомобилей самого разного назначения в широком диапазоне изменен и я технически допустимой массы.

Достоинством резиновых упругих элементов является прогрессивная характеристика, обеспечивающая существенное увеличение жесткости упругого элемента по мере деформации. Основные ограничения по использованию таких элементов связаны с недостатками, определяемыми качеством исходного материала и технологией изготовления.

Пневматические упругие резина-кордные элементы (рис. 6) используют на транспортных средствах (автобусы, грузовые автомобили, полуприцепы), вес подрессоренных масс которых может значительно меняться.

Рис. 6. Пневматический упругий элемент

Пневматические упругие элементы имеют малый вес, высокую долговечность и прогрессивную нелинейную упругую характеристику. Изготавливаются из двухслойных резино-кордовых оболочек. Для снижения жесткости и уменьшения её изменения при деформации подвески пневматический элемент может дополняться металлическими емкостями, одной или двумя, позиции 1 и 2.

Гидропневматические упругие элементы (рис. 7) отличаются тем, что упругим элементом является камера со сжатым инертным газом, находящимся под большим давлением, а рабочая жидкость передает вертикальную нагрузку.

Рис. 7. Гидропневматческий элемент

Сила нормальной реакции Q от колеса с помощью поршня 4 гидравлической телескопической стойки, рабочей жидкости, заполняющей цилиндр 3, и поршня 2 упругого элемента передается на газ в камере 1. Давление газа в упругом элементе может достигать 20 МПа, что обеспечивает его компактные размеры. Гашение колебаний подрессоренной массы обеспечивается дросселированием жидкости через клапаны 5 и 6.

Стойки или тяги стабилизатора

Они связывают стабилизатор поперечной устойчивости с рычагами или стойками амортизатора. Не во всех автомобилях они есть, все зависит от схемы подвески.

Например, в ВАЗ 2107 их нет. Стабилизатор прикручивается к рычагам через резиновые втулки.

На тягах тоже могут быть сайлентблоки или шаровые, как на рулевых наконечниках, чтобы смягчить удары от дороги. Со временем резина дубеет и рвется. Стойка начинает стучать на неровностях. Сайлентблок отдельно от тяги не меняется. При его повреждении нужно менять стойку стабилизатора целиком.

Самый надежный тип для России и СНГ

Каждый автолюбитель в России жалуется на плохое состояние дорог. Существует мнение, что все типы подвесок быстро вырабатывают ресурс при езде по российским дорогам.

Но во многом это зависит от стиля вождения автолюбителя. Чтобы продлить срок службы всего автомобиля, не забывайте притормаживать перед кочками и ямами или объезжать их.

Водители спорят на форумах, какой вид лучше. Но все зависит от личных предпочтений – кому-то нравится жесткая подвеска, а кому-то мягкая. Если говорить о надежности, то долговечными считаются пружинный и торсионный виды. Производители прислушиваются к мнениям автовладельцев и выпускают комбинированные виды, например, торсионно-пружинные.

Рекомендуем: Что такое крутящий момент двигателя автомобиля?

Подведем итоги

Подвеска состоит:

  1. Амортизаторы – демпфируют колебания кузова;
  2. Пружины – смягчают удары дороги;
  3. Амортизационная стойка – два элемента подвески, озвученные выше, в одной конструкции;
  4. Стабилизатор поперечной устойчивости и его тяги – стабилизирует кузов автомобиля в поперечной плоскости;
  5. Сайлентблоки или резиновые втулки – делают работу подвески тихой;
  6. Рычаги.

Это основные элементы автомобильной подвески. В зависимости от сложности ходовой, их количество и состав может меняться.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]