Рулевой механизм: описание,виды,назначение,принцип работы ,устройство.

Каждый узел и механизм автомобиля по-своему важен. Пожалуй, нет такой системы, без которой автомобиль мог бы нормально функционировать. Одна из таких систем – рулевой механизм. Наверное, это одна из самых важных частей машины. Давайте рассмотрим, как устроен этот узел, назначение его, элементы конструкции. А также научимся регулировать и ремонтировать эту систему.

Принцип работы реечной рулевой тяги

Реечный рулевой механизм

Реечный рулевой механизм — является самым распространенным типом механизма, устанавливаемым на легковые автомобили. Основными элементами рулевого механизма являются шестерня и рулевая рейка. Шестерня устанавливается на валу рулевого колеса и находится в постоянном зацеплении с рулевой (зубчатой) рейкой. Схема реечного рулевого механизма

1 – подшипник скольжения; 2 – манжеты высокого давления; 3 – корпус золотников; 4 – насос; 5 – компенсационный бачок; 6 – рулевая тяга; 7 – рулевой вал; 8 – рейка; 9 – компрессионный уплотнитель; 10 – защитный чехол. Работа реечного рулевого механизма происходит следующим образом. При вращении рулевого колеса рейка перемещается влево или вправо. Во время движения рейки перемещаются присоединенные к ней тяги рулевого привода и совершают поворот управляемых колес.

Реечный рулевой механизм отличается простотой конструкции и как следствие, высоким КПД, а также имеет высокую жесткость. Но такой тип рулевого механизма чувствителен к ударным нагрузкам от неровностей дороги, склонен к вибрациям. По причине своих конструктивных особенностей реечный рулевой механизм применяется на переднеприводных автомобилях

Червячный рулевой механизм

Схема червячного редуктора
Этот рулевой механизм является одним из «устаревших» устройств. Им оснащены практически все модели отечественной «классики». Механизм применяется на автомобилях с повышенной проходимостью с зависимой подвеской управляемых колес, а также в легких грузовых автомобилях и автобусах.

Конструктивно устройство состоит из следующих элементов:

  • рулевой вал
  • передача «червяк-ролик»
  • картер
  • рулевая сошка

Пара «червяк-ролик» находится в постоянном зацеплении. Глобоидальный червяк представляет собой нижнюю часть рулевого вала, а ролик закреплен на валу сошки. При вращении руля ролик перемещается по зубьям червяка, благодаря чему вал рулевой сошки также поворачивается. Результатом такого взаимодействия является передача поступательных движений на привод и колеса.

Рулевой механизм червячного типа имеет следующие преимущества:

  • возможность поворота колес на больший угол
  • гашение ударов от дорожных неровностей
  • передача больших усилий
  • обеспечение лучшей маневренности машины

Изготовление конструкции достаточно сложное и дорогое – в этом главный ее минус. Рулевое управление с таким механизмом состоит из множества соединений, периодическая регулировка которых просто необходима. В противном случае придется заменять поврежденные элементы.

Особенности узла и конструкция

На автомобилях используется кинематический способ смены направления движения, подразумевающий, что осуществление поворота происходит за счет смены положения управляемых колес. Обычно управляемой является передняя ось, хотя существуют и авто с так называемой системой подруливания. Особенность работы в таких авто заключается в том, что колеса задней оси тоже поворачиваются при изменении направления, хоть и на меньший угол. Но пока эта система широкого распространения не получила.

Помимо кинематического способа на технике используется еще и силовой. Особенность его заключается в том, что для совершения поворота колеса одной стороны притормаживаются, в то время, как с другой стороны они продолжают двигаться с прежней скоростью. И хоть этот способ изменения направления на легковых авто распространения не получил, на них он все же используется, но в несколько ином качестве – как система курсовой устойчивости.

Этот узел автомобиля состоит из трех основных элементов:

  • рулевая колонка;
  • рулевой механизм;
  • привод (система тяг и рычагов);


Рулевой узел
У каждой составляющей – своя задача.

Принцип работы гидроусилителя руля автомобиля

Чтоб понять, как работает гидроусилитель рулевого управления автомобиля, рассмотрим несколько вариантов, точней разные ситуации поворота колес. Одна из самых распространенных ситуаций, когда автомобиль стоит на месте, но с заведенным двигателем. В таком случае жидкость просто перекачивается насосом с бачка по системе и обратно в бачок.

Еще одна сама распространенная ситуация, когда водитель вращает руль

. В таком случае крутящий момент крутящий момент поступает на вал, и впоследствии на торсион, который в свою очередь начинает закручиваться относительно своей оси. Как правило, в такой момент поворотный золотник не срабатывает из-за колес, за счет чего жидкость попадает в полости гидроцилиндра под давлением (зависит от того, в какую сторону вывернули руль). Излишки жидкости с другой полости гидроцилиндра поступают обратно в бачок по магистрали. Основой всего тут можно считать шток, за счет давления жидкости на поршень со штоком, рулевая рейка может перемещаться, соответственно и колеса могут поворачиваться.

На видео представлен принцип работы гидравлической рейки руля

Не меньше бывает ситуация, когда водитель удерживает руль в одном положении или вовсе выворачивает до отказа. Многие специалисты говорят, что это самый тяжелый момент для гидроусилителя руля. В такой ситуации вся нагрузка идет на насос ГУР, так как распределитель не может вернуться в исходное положение. Чаще всего появляется шум, возможна вибрация или другие моменты. Чтоб избавится от такого, достаточно выровнять колеса и начать движение.

Какой бы не была ситуация, механизм и принцип работы гидроусилителя руля устроен таким образом, что в случае потери работоспособности одного из элементов. Все рулевое управление остается работать в штатном режиме, но с усилием для управления.

Рулевая колонка

Выполняет передачу вращательного усилия, которое создает водитель для изменения направления. Состоит она из рулевого колеса, располагаемого в салоне (на него и воздействует водитель, вращая его). Оно жестко посажено на вал колонки. В устройстве этой части рулевого управления очень часто используется вал, разделенный на несколько частей, соединенных между собой карданными шарнирами.

Такая конструкция сделана не просто так. Во-первых, это позволяет менять угол положения рулевого колеса относительно механизма, смещать его в определенную сторону, что нередко необходимо при компоновке составных частей авто. В дополнение такая конструкция позволяет повысить комфортабельность салона – водитель может менять положение рулевого колеса по вылету и наклону, обеспечивая максимально удобное его положение.

Во-вторых, составная рулевая колонка имеет свойство «ломаться» в случае ДТП, снижая вероятность травмирования водителя. Суть такова – при фронтальном ударе двигатель может сместиться назад и толкнуть рулевой механизм. Если бы вал колонки был цельным, изменение положения механизма привело бы к выходу вала с рулевым колесом в салон. В случае же со составной колонкой, перемещение механизма будет сопровождаться всего лишь изменением угла одной составляющей вала относительно второй, а сама колонка остается неподвижной.

Элементы пружинной зависимой подвески

Основными составляющими пружинной зависимой подвески, помимо металлической балки, являются:

  • упругий элемент (пружина);
  • демпфирующий элемент (амортизатор);
  • реактивные штанги (рычаги);
  • стабилизатор поперечной устойчивости.

Самая популярная подвеска такого типа имеет пять рычагов. Четыре из них являются продольными, и лишь один – поперечный. Направляющие устройства с одной стороны крепятся к жесткой балке, а с другой – к раме автомобиля. Эти элементы обеспечивают восприятие подвеской продольных, боковых и вертикальных усилий.

Поперечный рычаг, препятствующий смещению моста из-за воздействия боковых усилий, имеет отдельное название – “тяга Панара”. Различают сплошную и регулируемую тягу Панара. Вторая разновидность поперечного рычага может также менять высоту моста относительно кузова автомашины. Из-за особенностей конструкции тяга Панара при левых и правых поворотах работает по-разному. В связи с этим у автомобиля могут быть определенные проблемы с управляемостью.

Рулевой механизм

Предназначен для преобразования вращения вала рулевой колонки в поступательные движения элементов привода.

Наибольшее распространение на легковых автомобилях получили механизмы типа «шестерня-зубчатая рейка». Ранее же использовался еще один вид – «червяк-ролик», который сейчас в основном используется на грузовых авто. Еще один вариант для грузовиков – «винтовой».

«шестерня-рейка»

Распространение тип «шестерня-рейка» получил благодаря сравнительно простому устройству рулевого механизма. Состоит этот конструктивный узел из трех основных элементов – корпус, в котором размещается шестерня и перпендикулярно ей – рейка. Между двумя последними элементами имеется постоянное зубчатое зацепление.

Работает этот вид механизма так: шестерня жестко связана с рулевой колонкой, поэтому она вращается вместе с валом. Из-за зубчатого соединения вращение передается на рейку, которая при таком воздействии смещается внутри корпуса в ту или иную сторону. Если водитель вращает рулевое колесо влево, взаимодействие шестерни с рейкой приводит к тому, что последняя перемещается вправо.

Зачастую на авто применяются механизмы «шестерня-рейка» с фиксированным передаточным числом, то есть диапазон поворота рулевого колеса для изменения угла колес одинаков при всех их положениях. Для примера, предположим, что для поворота колес на угол 15° необходимо сделать 1 полный оборот руля. Так вот, неважно, в каком положении находятся управляемые колеса (крайнее, прямолинейное), для поворота на указанный угол придется сделать 1 оборот.

Но некоторые автопроизводители устанавливают на свои авто механизмы с меняющимся передаточным числом. Причем достигается это достаточно просто – изменением угла положения зубьев на рейке в определенных зонах. Эффект от этой доработки механизма такой: если колеса стоят прямо, то для изменения их положения на те же 15° (пример) требуется 1 оборот. Но если они находятся в крайнем положении, то из-за измененного передаточного числа, колеса повернуться на указанный угол уже через пол-оборота. В результате диапазон поворота руля «от края до края» значительно меньше, чем в механизме с фиксированным передаточным числом.


Рейка с переменным передаточным числом

Помимо простоты устройства тип «шестерня-рейка» используется еще потому, что в такой конструкции возможна реализация исполнительных механизмов гидроусилителя (ГУР) и электроусилителя (ЭУР), а также электрогидравлического (ЭГУР).

«червяк-ролик»

Следующий тип – «червяк-ролик», менее распространен и на легковых авто сейчас практически не используется, хотя его можно встретить на автомобилях ВАЗ классического семейства.

В основе этого механизма положена червячная передача. Представляет червяк собой винт с резьбой особого профиля. Этот винт располагается на валу, соединенном с рулевой колонкой.

С резьбой этого червяка контактирует ролик, соединенный с валом, на который посажена сошка – рычаг, взаимодействующий с элементами привода.


Червячный рулевой механизм

Суть работы механизма такова: при вращении вала, винт вращается, что приводит к продольному перемещению ролика по его резьбе. А поскольку ролик установлен на валу, то это смещение сопровождается поворотом последнего вокруг своей оси. Это в свою очередь приводит к полукруговому движению сошки, которая и воздействует на привод.

От механизма типа «червяк-ролик» на легковых авто отказались в пользу «шестерни-рейки» из-за невозможности интегрировать в него гидроусилитель (на грузовых авто он все же имелся, но исполнительный механизм был вынесенным), а также достаточно сложной конструкции привода.

Винтовой тип

Конструкция винтового механизма – еще сложнее. В ней также имеется винт с резьбой, но контактирует он не с роликом, а со специальной гайкой, на внешней стороне которой нанесен зубчатый сектор, взаимодействующий с таким же, но сделанным на валу сошки. Также существуют механизмы с промежуточными роликами между гайкой и зубчатым сектором. Принцип же действия такого механизма практически идентичен червячному – в результате взаимодействия вал проворачивается и тянет сошку, а та в свою очередь – привод.


Винтовой рулевой механизм

На винтовой механизм можно установить гидроусилитель (гайка выполняет роль поршня), но на легковых авто он не применяется из-за массивности конструкции, поэтому и используется он только на грузовиках.

Наиболее распространенные проблемы, их причины и способы устранения

Любому агрегату свойственны поломки и рулевой редуктор, конечно же, не исключение. Автолюбителям будет гораздо проще разобраться в причине неполадки и устранить ее в кратчайшие сроки, если они будут знакомы с основными проблемами.

  1. Наиболее часто встречаемой поломкой является течь рулевого редуктора. Присутствие такой проблемы можно обнаружить визуально по наличию масла под автомобилем. Причина может быть в течи сальника или в коррозии первичного вала. При этом в первом случае в ходе ремонта необходимо поставить новые сальники, манжеты, прокладки. А во втором случае, следует отшлифовать вал, а затем в обязательном порядке произвести газо-термонапыление до нормальных размеров.
  2. Ощущение «тугого» руля. Оно появляется в связи с увеличением усилия для поворота рулевого колеса. При этом для того, чтобы быть уверенным есть ли причины для ремонта рулевого редуктора необходимо специальным динамометрическим ключом измерить уровень усиления поворота рулевого колеса. Затем полученный результат сопоставить с данными, которые предусматриваются заводом-изготовителем автомобиля. Если показатели не соответствуют, установленным нормам, надо произвести диагностику на специализированном стенде. Это поможет узнать давление, расход рабочей жидкости, а также наличие ее перетечек в редукторе. В этом случае не стоит пытаться починить редуктор самостоятельно. Гораздо лучше, проще и надежнее будет просто отдать его в мастерскую. Или же по желанию заменить на новый.
  3. Люфт на рулевом колесе. Это может быть часть неисправности крестовины рулевой колонки, а может быть и люфт непосредственно редуктора. При этом требуется не частичная, а полная разборка агрегата, изучение состояния деталей и замена изношенных элементов. После произведенной работы устройство следует правильно отрегулировать на стенде.
  4. Стук в редукторе рулевого управления. Этот вид неисправности можно определить по ощутимой «отдаче» в руль. Возникает такая проблема вследствие износа упорных подшипников. Необходимо заменить поврежденные детали и далее отрегулировать агрегат на стенде.

Привод

Привод в конструкции рулевого управления используется для передачи перемещения рейки или сошки на управляемые колеса. Причем в задачу этой составляющей входит изменение положения колес на разные углы. Обусловлено это тем, что колеса при повороте движутся по разным радиусам. Поэтому колесо с внутренней стороны при изменении траектории движения должно поворачиваться на больший угол, чем внешнее.

Конструкция привода зависит от используемого механизма. Так, если на авто используется «шестерня-рейка», то привод состоит всего лишь из двух тяг, соединенных с поворотным кулаком (роль которого выполняет амортизационная стойка) посредством шарового наконечника.

К рейке эти тяги могут крепиться двумя способами. Менее распространенным является жесткая фиксация их болтовым соединением (в некоторых случаях соединение осуществляется через сайлент-блок). Для такого соединения в корпусе механизма проделано продольное окно.

Более распространенный метод соединения тяг – жесткое, но подвижное соединение с концами рейки. Для обеспечения такого соединения на конце обеих тяг сделан шариковый наконечник. Посредством гайки этот шар прижимается к рейке. При передвижении последней тяга меняет свое положение, что и обеспечивает имеющееся соединение.

В приводах, где используется механизм «червяк-ролик», конструкция значительно сложнее и представляет собой целую систему рычагов и тяг, получивших называние рулевой трапеции. Так, к примеру, на ВАЗ-2101 привод состоит из двух боковых тяг, одной средней, маятникового рычага и поворотных кулаков с рычагами. При этом для обеспечения возможности изменения угла положения колеса поворотный кулак крепиться к рычагам подвески при помощи двух шаровых опор (верхней и нижней).

Большое количество составных элементов, а также соединений между ними делает такой тип привода более подверженным износу и возникновению люфтов. Этот факт — еще одна причина отказа от червячного механизма в пользу реечного.

Основные неисправности

Распространённые неисправности СРУ:

  • износ шарнира наконечника тяги,
  • пробуксовка ремня привода насоса гидроусилителя,
  • потеря герметичности РМ,
  • разрушение подшипника вала,
  • ослабление крепежа.

О неполадках свидетельствуют стуки, биение или увеличенный люфт руля, шум в усилителе, течь рабочей жидкости (с РСУ с гидравликой).

Самые распространённые меры, предпринимаемыми мастерами на СТО в случае обнаружения проблем с СРУ, — замена наконечника тяги (либо тяги полностью), пыльника, жидкости гидроусилителя. Также часто может требоваться ремонт насоса гидроусилителя, рейки, редуктора.

Специальная электронная обучающая программа, которая посвящена системе рулевого управления доступна на базе платформы ELECTUDE. Учебные модули ориентированы на базовый уровень подготовки и позволяют усвоить принципы работы системы, ознакомиться с трапецией рулевого управления, гидравлическими и электрическими усилителями, разобраться, чем отличаются системы прямого и непрямого управления.

«Обратная связь»

Стоит отметить, что в рулевом механизме существует еще и так называемая «обратная связь». Водитель не только воздействует на колеса, а посредством ее же получает информацию об особенностях движения колес по дороге. Проявляется это в виде вибраций, рывков, создания определенно направленных усилий на руле. Эта информация считается очень важной для правильной оценки поведения авто. Доказательством тому является тот факт, что в авто, оснащаемых ГУР и ЭУР, конструкторы сохранили «обратную связь».

Передовые разработки

Этот узел продолжают совершенствовать, так самыми последними достижениями являются системы:

  • Активного (динамического) рулевого управления. Она позволяет изменять передаточное число механизма в зависимости от скорости автомобиля. Также выполняет и дополнительную функцию – корректировка угла передних колес в поворотах и при торможении на скользкой дороге.
  • Адаптивного рулевого управления (управление по проводам). Это самая новая и перспективная система. В ней отсутствует прямая связь между рулем и колесами, всё работает за счёт датчиков и исполнительных устройств (сервоприводов). Большое распространение система ещё не получила по причине психологического и экономического факторов.


Система «рули по проводам»

Принцип действия авторулевого

Авторулевой не является самостоятельным прибором; он обязательно подключается к гирокомпасу или дистанционному магнитному компасу.

На рис. 2 показана блок-схема авторулевого, поясняющая принцип его действия.


Рис. 2 Схема подключения авторулевого к гирокомпасу

В ПУ имеется переключатель S1.1, с помощью которого можно установить один из трех видов управления:

  • автоматический;
  • следящий;
  • простой.

В автоматическом режиме вырабатывается пять сигналов, обеспечивающих удержание судна на заданном курсеДвижение судна постоянным курсом при изменении режимов работы движителей. В этом режиме схема авторулевого имеет связь с гирокомпасом или дистанционным магнитным компасом. Находясь под влиянием внешних возмущений (ветер, волна и т. п.), судно отклоняется от заданного курса. Задача авторулевого заключается в том, чтобы выработать сигнал, передать его на рулевое устройство судна и обеспечить удержание судна на заданном курсе. При уходе судна с курса на угол а сельсин-премник В2 передает вращение на сельсин-трансформатор В3, на выходе которого формируется основной управляющий сигнал U1= K1a, пропорциональный углу отклонения судна от курса. Два других управляющих сигнала вырабатываются в блоке коррекции (БК). Эти сигналы образуются на основе сигнала посредством дифференцирования U2=K2α и интегрирования:

(U3=K3∫otadt).

Сумма сигналов U1+U2+U3 подается на вход усилителя. Усиленный суммарный сигнал через переключатель поступает на двигатель М1 исполнительного механизма. Двигатель М1 устанавливает определенное положение золотников рулевой машины (РМ) и обеспечивает перекладку руля на угол р. В зависимости от типа РМ, в комплект авторулевого может входить исполнительный механизм ИМ-1 или ИМ-2. В приборе ИМ-1 выходной валик имеет вращательное движение на некоторый угол E, а в приборе ИМ-2 выходной валик совершает поступательное перемещение на некоторую величину 1.

Величина E(l) определяет скорость перекладки руля, т.е. E = Кβ. С сельсина-трансформатора В5, механически связанного с двигателем М1, снимается сигнал обратной связи U5 = K5 в, который служит для уменьшения автоколебаний пера руля.

Сельсин-трансформатор В6, механически связанный с рулем, вырабатывает сигнал обратной связи U4 = K4p. Этот сигнал ограничивает угол перекладки руля и вместе с сигналом U1 обеспечивает удержание судна на заданном курсе (по закону незатухающих колебаний). Для погашения колебаний судна относительно линии заданного курса, т.е. для сдерживания судна, служит сигнал U2 = К2а.

Все пять сигналов суммируются, причем сигналы U1 и U4 всегда в противофазе.

Для того чтобы задать новый курс в автоматическом режиме, необходимо поворотом штурвала (угол γ) передать вращение через механический дифференциал (МД) на подвижный индекс репитера и ротор сельсина-трансформатора В3.

В следящем режиме (положение 2 контактов переключателя S1.1) гирокомпасГирокомпас «Стандарт-14» от схемы авторулевого отключается. Основной сигнал U1 вырабатывается сельсином-трансформатором В3 за счет поворота штурвала вручную на угол у (U1 = K1γ). Сигналы U3 и U3 блоком коррекции не вырабатываются, так как в следящем режиме питание этого блока отключено. Сигналы U4 и U5 формируются так же, как в автоматическом режиме.

В простом режиме сигналы U1…U5 не вырабатываются. Питание на двигатель М1 подается от трансформатора Т1 через кнопки S6, S7 и контакты переключателя

S1.6, S1.7. В качестве запасного (аварийного) предусмотрено ручное управление золотниками рулевой машины (при обесточенном двигателе М1).

Сельсин-приемник В1 обеспечивает работу репитера курса, а сельсины В7 и В8 – работу аксиометра.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]