Система питания двигателя автомобиля предназначена для подачи, очистки и хранения топлива, очистки воздуха, изготовления горючей смеси и пуска ее в цилиндры двигателя. Качество и объем этой смеси при различных рабочих режимах мотора должно быть разным, что также находится в компетенции системы питания двигателя. Так как мы будем рассматривать работу бензиновых моторов, в качестве топлива у нас всегда будет выступать бензин. В зависимости от типа устройства, выполняющего подготовку топливовоздушной смеси, силовые агрегаты могут быть карбюраторными, инжекторными или оборудованы моновпрыском. Для обеспечения экономичной и надежной работы мотора, бензин должен отличаться достаточной детонационной стойкостью и хорошей испаряемостью.
Детонацией ( см. детонация двигателя ) называется очень быстрое сгорание топлива, похожее на взрыв. Работа мотора с детонацией недопустима, т.к. сопровождается ударной нагрузкой на поршневые пальцы, коренные и шатунные подшипники, местным нагревом составляющих, дымным выпуском, прогоранием клапанов и поршней, увеличением топливного расхода, уменьшением мощности двигателя. На появление детонации также влияют нагрузка и скоростной режим мотора, опережение зажигания, нагарообразование на головке цилиндров и поршне ( см. работа поршня ) . Антидетонационные свойства бензинового топлива оцениваются октановой величиной. Бензин сравнивают со смесью следующих топлив: изооктан, гептан. Гептан сильно детонирует – из-за этого для него октановое число условно принимают равное нулю. Второе топливо, изооктан, слабо детонирует – октановое число для него условно принимают в 100 единиц.
Октановым числом топлива является процентное количество изооктана в такой смеси с гептаном, которая по своей детонационной стойкости равноценна применяемому топливу. К примеру, если смесь, состоящая из 24% гептана и 76% изооктана (по объему), по детонационным качествам соответствует проверяемому бензиновому топливу, то октановое число этого бензина будет равно 76. Чем больше октановое число топлива, тем выше его стойкость к детонации.
В целом, топливная система состоит из следующих элементов:
- топливный бак (в нем хранится запас топлива – бензина или дизтоплива)
- топливный насос (забирает топливо из бака и гонит его к двигателю)
- датчик уровня топлива (подает сигнал о необходимости дозаправки)
- топливный фильтр или система фильтров (очищают топливо от механических примесей)
- воздушный фильтр (очищает воздух от пыли и других мелких частиц)
- топливопровод (система трубок и шлангов, по которым топливо подается в двигатель)
- система впрыска (устройство, через которое топливо попадает в камеру сгорания)
Топливный бак, или бензобак, представляет собой металлическую или пластиковую емкость, которая обычно находится под багажником, хотя в некоторых машинах для него нашли довольно интересные места. Если вы не можете найти бензобак, его местоположение лучше выяснить в инструкции либо у механика.
Внутри бензобака находится маленький поплавок, который плавает на поверхности топлива, посылая сигналы датчику уровня топлива на панели приборов, благодаря чему можно узнать, когда нужна очередная заправка. Невзирая на то что некоторые машины работают на дизельном топливе, сейчас в большинстве случаев используется бензин, поэтому под словом “топливо” мы будем подразумевать именно его, хотя это и не совсем корректно.
Топливный насос подает бензин (или дизтопливо) по топливопроводу, который идет под днищем автомобиля от бака к карбюратору или инжекторам – для бензиновых двигателей. В дизельных двигателях топливо подается в насос высокого давления (ТНВД) и далее в форсунки. В старых машинах с карбюраторами используется механический насос, который работает от двигателя. Двигатели с впрыском топлива используют электрический насос, который может находиться внутри бака либо где-то рядом.
Топливный фильтр делает именно то, о чем говорит его название, — фильтрует топливо, то есть очищает его. На своем пути по бензопроводу к инжекторам или карбюратору топливо проходит через топливный фильтр. Маленькая сетка внутри фильтра задерживает грязь и ржавчину, которая может присутствовать в бензине. На некоторых машинах установлены дополнительные фильтры между баком и насосом. Важно менять фильтры, следуя заводскому графику обслуживания.
Воздухоочиститель очищает воздух перед его смешиванием с бензином. В карбюраторных двигателях воздухоочиститель обычно большой и круглый с торчащей сбоку трубкой для облегчения забора свежего воздуха. На инжекторных двигателях может быть установлен круглый воздухоочиститель, а может быть и прямоугольный.
Чтобы найти прямоугольный воздухоочиститель, следуйте за большим раструбом воздухозаборника, отведенного как можно дальше от двигателя.
Внутри воздухоочистителя находится воздушный фильтр, который задерживает грязь и частицы пыли из забираемого воздуха. Если вы часто ездите по пыльной или песчаной местности, нужно периодически проверять воздушный фильтр и менять его по мере загрязнения (чаще чем того требует инструкция по эксплуатации).
Советы экспертов
Эксперты рекомендуют учесть, что система питания бензинового двигателя в условиях эксплуатации на российских дорогах подвергается повышенным нагрузкам. Поэтому техобслуживание нужно производить часто. Топливные фильтры нужно менять через каждые 12-15 тыс. км пробега, проводить чистку форсунок через каждые 30 тыс. км.
Важно уделять внимание качеству топлива. Чем оно выше, тем долговечнее будет работа двигателя и всей системы. Поэтому важно приобретать бензин в проверенных точках реализации.
Рассмотрев особенности и устройство системы питания бензинового двигателя,можно понять принцип ее работы. При необходимости техобслуживание и ремонт можно произвести собственными руками.
Виды систем питания двигателя
В зависимости от применяемой топливной жидкости двигатели, а, следовательно, и системы питания можно разделить на три основных вида:
- бензиновые;
- дизельные;
- работающие на газообразном топливе.
Существуют и другие виды, но их применение очень незначительно.
В некоторых случаях классификация систем питания производится не по типу топлива, а по способу приготовления и подачи горючей смеси в камеру сгорания. В этом случае различают такие типы:
- карбюраторный (эжекторный);
- с принудительным впрыском (инжекторный).
Частые неисправности инжектора
Ремонт системы питания бензинового двигателя инжекторного типа происходит несколько иначе. Существует перечень частых неисправностей подобных систем. Зная их, установить причину неправильной работы мотора будет проще. Со временем из строя выходят датчики, которые контролируют разные показатели состояния системы. Периодически их нужно проверять на работоспособность. В противном случае бортовой компьютер не сможет выбрать адекватную дозировку и оптимальный режим впрыска топлива.
Также со временем в системе загрязняются фильтры или даже сами форсунки инжектора. Такое возможно при использовании бензина недостаточного качества. Периодически фильтр нужно менять. Также нужно обращать внимание на сеточный очиститель бензонасоса. В некоторых случаях его можно чистить. Один раз в несколько лет нужно мыть бензобак. В этот момент также желательно поменять все фильтры системы.
Если же со временем засорятся инжекторные форсунки, мотор станет терять мощность. Расход бензина также увеличится. Если вовремя не устранить эту неисправность, система будет перегреваться, клапаны будут перегорать. В некоторых случаях форсунки могут недостаточно плотно закрываться. Это чревато переизбытком топлива в камере сгорания. Бензин будет смешиваться с маслом. Чтобы предотвратить неблагоприятные последствия, форсунки нужно периодически очищать.
Система питания бензинового двигателя инжекторного типа может потребовать промывки форсунок. Эту процедуру можно выполнить двумя способами. В первом случае инжекторные форсунки не демонтируют из автомобиля. Через них пропускается специальная жидкость. Топливную магистраль нужно отсоединить от рампы. При помощи специального компрессора промывочная жидкость поступает в форсунки. Это позволяет эффективно очистить их от загрязнений. Второй вариант чистки предполагает снятие форсунок. Далее их обрабатывают в специальной ультразвуковой ванне или на промывочном стенде.
Состав и функции системы подачи топлива
Главная функция любой топливной системы – это подача необходимого количества топлива из бака в камеру сгорания в определенный момент времени. Функционально она разделяется на две основных системы:
- транспортировка топлива, его фильтрация и создание давления в системе – выполняется механическими и гидравлическими устройствами;
- расчет количества и момента впрыска топлива, а также распределение его по цилиндрам – осуществляется электронными устройствами.
Топливная система автомобиля
В состав топливной системы входят следующие элементы:
- Бак – герметичная емкость для хранения топлива.
- Трубопроводы (прямой и обратный) – трубки и гибкие шланги, по которым осуществляется транспортировка топлива.
- Фильтры (грубой и тонкой очистки) – выполняют очистку от механических загрязнений.
- Регулятор давления – необходим для обеспечения заданного уровня давления.
- Насос – как правило, погружной, приводимый в движение электродвигателем.
- ТНВД – для систем непосредственного впрыска (дизельных двигателей).
- Топливные форсунки.
Фильтры тонкой очистки топлива
Топливные фильтры. Для очистки топлива от механических примесей применяют фильтры грубой и тонкой очистки. Фильтр-отстойник грубой очистки отделяет топливо от воды и крупных механических примесей. Фильтр-отстойник состоит из корпуса, отстойника и фильтрующего элемента, который собран из пластин толщиной 0,14 мм. На пластинах имеются отверстия и выступы высотой 0,05 мм. Пакет пластин установлен на стержень и пружиной поджимается к корпусу. В собранном состоянии между пластинами имеются щели, через которые проходит топливо. Крупные механические примеси и вода собираются на дне отстойника и через отверстие пробки в днище периодически удаляются.
Топливный бак (а) и работа выпускного (б) и впускного (в) клапанов: 1— фильтр-отстойник; 2 — кронштейн крепления бака; 3 — хомут крепления бака; 4 — датчик указателя уровня топлива в баке; 5 — топливный бак; 6 — кран; 7 — пробка бака; 8 — горловина; 9 — облицовка пробки; 10 — резиновая прокладка; П — корпус пробки; 12 — выпускной клапан; 13 — пружина выпускного клапана; 14 — впускной клапан; 15 — рычаг пробки бака; 16 -пружина впускного клапана.
Фильтр-отстойник: 1 — топливо провод к топливному насосу; 2 — прокладка корпуса; 3 — корпус-крышка; 4 — топливо провод от топливного бака; 5 — прокладка фильтрующего элемента; 6 — фильтрующий элемент; 7— стойка; 8 — отстойник; 9— сливная пробка; 10 — стержень фильтрующего элемента; 11 — пружина; 12 — пластина фильтрующего элемента; 13 — отверстие в пластине для прохода очищенного топлива; 14 — выступы на пластине; 15 — отверстие в пластине для стоек; 16 — заглушка; 17 — болт крепления корпуса-крышки.
Работа топливной системы автомобиля
Все рассмотренные элементы работают в следующей последовательности… в момент запуска двигателя, а на некоторых машинах в момент открытия водительской двери, начинает работать топливный насос, создавая необходимое рабочее давление в топливной системе, необходимое для подачи топлива к двигателю.
В момент прохождения топливного фильтра или системы фильтров, по пути к двигателю, топливо очищается от различных механических примесей. Воздух, поступает к камере сгорания или карбюратору через воздушный фильтр, где так же очищается.
В зависимости от конструкции двигателя топливо-воздушная смесь может готовиться как непосредственно внутри камеры сгорания цилиндра двигателя, так и до попадания в цилиндр, например, в карбюраторе. Возможен так же комбинированный способ приготовления топливо-воздушной смеси.
После того, как топливо-воздушная смесь готова и поступила в камеру сгорания, происходит ее воспламенение. Для продолжения работы двигателя требуется постоянная подача все новых порций топлива, за что и отвечает топливная система.
Устройство автомобиля
Техобслуживание карбюраторной системы
Техобслуживание и ремонт приборов системы питания бензинового двигателя можно произвести своими руками. Для этого нужно выполнить ряд манипуляций. Они сводятся к проверке креплений топливопроводов, герметичности всех компонентов. Также проводится оценка состояния системы выпуска отработанных газов, тяги дроссельных приводов, воздушной заслонки карбюратора. Кроме того, нужно проводить контроль состояния ограничителя коленчатого вала.
При необходимости нужно проводить очистку трубопроводов, замену уплотнителей. Особенностью техобслуживания карбюратора является необходимость проведения его настройки весной и осенью.
В некоторых случаях причиной ухудшения работы карбюраторного мотора могут быть неисправности в других узлах. Перед началом техобслуживания системы подачи топлива нужно проверить другие компоненты механизмов.
Неисправности системы питания бензинового двигателя карбюраторного типа можно проверить при работающем и выключенном двигателе.
Если мотор заглушен, можно оценить количество бензина в баке, а также состояние уплотнительных резинок под пробкой горловины. Также оценивается крепление бензобака, топливопровода и всех его элементов. Иные элементы системы тоже следует проверить на прочность крепежа.
Затем нужно запустить мотор. Проверяется отсутствие протечек в местах соединений. Также следует оценить состояние фильтров тонкой очистки и отстойника. Карбюратор нужно правильно настроить. В соответствии с рекомендациями производителя проводится выбор соотношения воздуха и бензина.
Функции, устройство и принцип функционирования
Каждый автомобиль характеризуется таким понятием, как «запас хода». Он определяется расстоянием, которое автомобиль способен преодолеть на полном топливном баке без дополнительных заправок. На данный показатель оказывают влияние самые различные факторы: сезонные, погодные и природные условия движения, характер дорожного покрытия, степень загруженности автомобиля, индивидуальные особенности водителя при управлении транспортным средством и т.д.). Однако главенствующую роль в определении «аппетита» автомобиля играет система питания и ее правильная работа.
Система питания выполняет функции:
- подачи топлива, его очистки и хранения;
- очистки воздуха;
- приготовления специальной горючей смеси;
- подачи смеси в цилиндры ДВС.
Классическая система питания автомобиля состоит из следующих структурных элементов:
- топливного бака, предназначенного для хранения горючего;
- топливного насоса, выполняющего функции создания давления в системе и принудительной подачи топлива;
- топливопроводов – специальных металлических трубок и резиновых шлангов для транспортировки горючего из топливного бака к ДВС (а излишков топлива – в обратном направлении);
- фильтра (или фильтров) очистки топлива;
- воздушного фильтра (для очистки воздуха от примесей);
- устройства приготовления топливно-воздушной смеси.
Система питания имеет достаточно простой принцип работы: под воздействием специального топливного насоса горючее из бака, предварительно пройдя процедуру очистки топливным фильтром, по топливопроводам подается к устройству, предназначенному для приготовления топливно-воздушной смеси. И уже затем смесь подается в цилиндры двигателя.
Бензин
Назначение системы питания бензинового двигателя заключается в подаче, очистке и хранении бензина. Это особый вид топлива, который обладает определенным уровнем испаряемости и детонационной стойкости. От его качества во многом зависит работа двигателя.
Показатель испаряемости говорит о способности бензина менять свое агрегатное состояние из жидкого в парообразное. Этот показатель в значительной степени влияет на особенности образования топливной смеси и ее горение. В процессе работы ДВС участвуют только газообразная часть топлива. Если же бензин находится в жидком виде, он отрицательно влияет на работу мотора.
Жидкое топливо стекает по цилиндрам. При этом с их стенок смывается масло. Такая ситуация влечет за собой быстрый износ металлических поверхностей. Также жидкий бензин препятствует правильному сгоранию топлива. Медленное сгорание смеси приводит к падению давления. При этом мотор не сможет развивать требуемую мощность. Токсичность отработанных газов повышается.
Также еще одним неблагоприятным явлением при наличии жидкого бензина в двигателе является появление нагара. Это ведет к быстрому разрушению мотора. Чтобы поддерживать показатель испаряемости в норме, нужно приобретать топливо в соответствии с погодными условиями. Существует летний и зимний бензин.
Рассматривая назначение системы питания бензинового двигателя, следует рассмотреть еще одну характеристику топлива. Это детонационная стойкость. Этот показатель оценивается при помощи октанового числа. Для определения детонационной стойкости новый бензин сравнивают с показателями эталонных типов топлива, октановое число которых известно заранее.
В состав бензина входят гептан и изооктан. По своим характеристикам они противоположны. У изооктана отсутствует способность к детонации. Поэтому его октановое число составляет 100 ед. Гептан же, наоборот, сильный детонатор. Его октановое число составляет 0 ед. Если смесь в ходе испытаний состоит на 92% из изооктана и на 8% из гептана, октановое число составляет 92.
Варианты системы питания
Основными видами горючего для ДВС являются бензин и дизельное топливо («солярка»). Газ (метан) так же относится к видам современного топлива, но, несмотря на широкую применяемость, пока не получил актуальности. Вид топлива является одним из критериев классификации систем питания ДВС.
В этой связи выделяют силовые агрегаты:
- бензиновые;
- дизельные;
- основанные на газообразном топливе.
Но наиболее признанной среди специалистов является типология систем питания двигателя по способу подачи топлива и приготовления топливно-воздушной смеси. Следуя данному принципу классификации, различаются, во-первых, система питания карбюраторного двигателя, во-вторых, система питания с впрыском топлива (или инжекторного двигателя).
Карбюратор
Карбюраторная система основана на действии технически сложного устройства – карбюратора. Карбюратор – это прибор, осуществляющий приготовление смеси топлива и воздуха в необходимых пропорциях. Несмотря на разнообразие видов, в автомобильной практике наибольшее применение получил поплавковый всасывающий карбюратор, принципиальная схема которого включает:
- поплавковую камеру и поплавок;
- распылитель, диффузор и смесительную камеру;
- воздушную и дроссельную заслонки;
- топливные и воздушные каналы с соответствующими жиклерами.
Подготовка топливно-воздушной смеси в карбюраторе осуществляется по пассивной схеме. Движение поршня в такте впуска (первом такте) создает в цилиндре разряженное пространство, в которое и устремляется воздух, проходя через воздушный фильтр и сквозь карбюратор. Именно здесь и происходит формирование горючей смеси: в смесительной камере, в диффузоре топливо, вырывающееся из распылителя, дробится воздушным потоком и смешивается с ним. Наконец, через впускной коллектор и впускные клапаны горючая смесь подается в конкретный цилиндр двигателя, где в необходимый момент и воспламеняется искрой от свечи зажигания.
Таким образом, система питания карбюраторного двигателя представляет собой преимущественно механический способ приготовления топливно-воздушной смеси.
Впрыск топлива
Эпоха карбюратора сменяется эпохой инжекторного двигателя, система питания которого основана на впрыске топлива. Ее основными элементами являются: электрический топливный насос (расположенный, как правило, в топливном баке), форсунки (или форсунка), блок управления ДВС (так называемые «мозги»).
Моновпрыск
На смену карбюратору пришла система так называемого «над дроссельного впрыска» топлива. Она также известна как моновпрыск или система центрального впрыска.
Принцип базируется на впрыске топлива одной форсункой, установленной на впускном коллекторе двигателя.
Самыми популярными конструкциями системы центрального впрыска являются решения Mono-Jetronic от R. R. Bosch и Opel-Multec (как нетрудно догадаться из названия, это решение корпорации Opel).
Появление моновпрыска приходится на середину 70-х годов 20-го века. В то время системой Mono-Jetronic стали оснащать автомобили Volkswagen и Audi.
Главной задачей при разработке моновпрыска стало нахождение альтернативы карбюраторной системе впрыска. Важно было найти более эффективную систему топливоподачи, которая смогла бы удовлетворить возросшим экологическим требованиям.
Mono-Jetronic: конструктивные элементы
- Регулятор давления. Способен поддержать на стабильном уровне рабочее давление в системе впрыска, а после выключения ДВС сохранить остаточное давление в системе . Это важно для облегчения пуска, создание барьеров против образования паровых пробок.
- Электромагнитный клапан (форсунка). Обеспечивает импульсный впрыск топлива. Управление клапаном осуществляется посредством электросигнала. Он идёт от блока управления.
- Дроссельная заслонка. Регулятор объема поступающего воздуха.
- Привод. Он ответственный за работу дроссельной заслонки.
- Электронный блок управления. «Мозг», синхронизатор.
Входные датчики (момента впрыска, положения дроссельной заслонки, оборотов двигателя, концентрации кислорода и т.д.).
Распределённый впрыск
В 70-е годы появились и системы распределительного впрыска, основанные на подаче топлива отдельной форсункой в предкамеру, расположенную перед впускным клапаном каждого цилиндра двигателя. Впрыск может быть при этом может быть как импульсным, так и непрерывным.
Мы остановимся на решении K-Jetronic производителя Robert R. Bosch с непрерывным впрыском. K-Jetroniс активно присутствовала на рынке с 1973-го по 1995 годы. Сначала K-Jetroniс выпускалась с механической системой дозирования. С 1982 года — с электронной начинкой и электронным управлением дозирования. Начиная с версий (модификаций) с электронным управлением система стала называться KE-Jetroniс.
Экономические характеристики автомобилей, их уровень топливной эффективности был существенно улучшен, уровень выбросов вредных веществ в выхлопе также снизился.
В системах K/KE-Jetronic впрыск топлива осуществлялся непрерывно в смесительную камеру перед впускным клапаном. При этом количественное дозирование топлива, поступающего в поток воздуха, производилось за счет взаимосвязанных узлов «расходомер – дозатор».
Помимо дозатора-распределителя обязательный элемент решения – дроссельная заслонка, расположенная за дозатором, у первых версий были вакуумно-механические клапаны коррекции топлива(запуск клапанов в работу возможен как от терморегуляторов, так от разряжения воздуха во впускном коллекторе), в поздних модификациях появились электрические клапаны коррекции топлива. Кроме того, системы стали оснащать кислородным датчиком (лямбда-зондом). Огромным плюсом схемотехнического решения стало то, что система впрыска могла быть оснащена катализаторам-, но к уровню надёжности были существенные вопросы.
Дискретный впрыск топлива
Новой эрой стал дискретный впрыск топлива. Первой здесь стала электронная система распределенного впрыска топлива L-Jetronic – опять-таки от R. R. Bosch. С появлением этого решения стало возможным говорить о качественной управляемости, безотказности, надёжности. Да, сразу же стало ясно, что это средний и высокий ценовой сегмент. Поэтому долгое время системы дискретного впрыска топлива сосуществовали с системами непрерывного распределительного впрыска типа K/KE-Jetronic.
Но постепенно L-Jetronic обрела массовость. Её стал активно использовать практически весь европейский автопром. Явные плюсы оценили и водители, и персонал автосервиса: повысилась топливная экономичность авто. Для обслуживания перестали быть нужны сложные навыки (в первую очередь, это стало возможным за счёт того, что отпала надобность выполнять механические настройки).
L-Jetronic несколько раз модернизировалась и уверенно держалась на рынке до появления стандарта Евро-3. После чего более актуальными стали решения на основе термоанемометрических датчиков массметра (массового расхода воздуха). В частности, популярность приобрела модификация LH-Jetronic .
У новой разработки стала доступна индивидуальная регулировка подачи топлива в каждый из цилиндров Объединяющая черта систем Mono-Jetronic, L-Jetronic, LH-Jetronic состоит в том, это все эти решения управляют только впрыском топлива, при этом для воспламенения топлива задействована система зажигания с модулем электронного управления.
Устройства, в которых система и зажигания и впрыск были синхронизированы и объединены, корпорация R.R. Bosch начала выпускать с 1979 года.
Ярким примером решения с объединёнными системами впрыска и зажигания – стала система Motronic от R.R. Bosch. Она существовала в нескольких модификациях, появившихся в 90-е годы 20-го века. В эти годы в их конструкции входили механические расходомеры воздуха. Но вскоре вместо них стали использоваться термоанемометрические датчики-расходомеры, расширились возможности для самодиагностики.
Правда, полностью удовлетворить запросам диагноста системы не могли, поскольку протокол выявления неисправностей не обладал высокой результативностью. В последующих модификациях эта проблема была успешно решена.
Но самым революционным решением Motronic стало появление датчика абсолютного давления во впускном коллекторе (MAP-sensor).
Использование MAP-сенсора в системе управления двигателем позволило готовить качественную топливовоздушную смесь, состав которой близок к желаемому, и, главное, не сложно соблюсти европейские требования к выхлопам автомобилей.
Но для выхода на американский рынок даже этого было недостаточно. По стандартам США в топливной системе должна быть обязательная система контроля утечек паров топлива из бака. Так появилось инновационное решение Motronic M5. С ним появились все условия для того, чтобы исключить эксплуатацию автомобиля с потерявшей герметичность пробкой заливной горловины или неисправной системой вентиляции топливного бака.
Кроме того, эта система соответствует требованиям самого строгого протокола самодиагностики OBD-II/CARB.
А благодаря электроуправлению дроссельной заслонкой отлажено взаимодействие между системой управления двигателем и системой торможения.
Системы непосредственного впрыска Особое место среди систем впрыска бензиновых двигателей получили системы непосредственного впрыска. Их принцип действия основан на том, что топливо посредством инжектора распыляется прямо в цилиндр двигателя.
- Это важно для достижения топливной экономичности.
- Плунжерный насос. Подаёт топливо в рампу, соединённую с форсунками.
- Регулятор давления топлива. Поддерживает стабильное рабочее давление в топливной рампе. Топливная рампа. Здесь непосредственно происходит процесс распределения топлива по форсункам.
- Предохранительный клапан на рампе. Защищает рампу от предельных давлений.
- Датчик высокого давления. Замеряет давление в рампе, подаёт сигнал блоку управлением двигателя на коррекцию давления.
Согласование взаимодействия узлов осуществляется посредством электронной системы управления двигателем. От блока электронного управления поступают команды на исполнительные механизмы.
Интересная деталь!
Если среди дизельных систем впрыска такие топливные системы были популярны давно, то среди бензиновых распространение получили не сразу. Причина элементарно проста: бензин в отличие от дизельного топлива является плохой смазкой, что вызывало быстрый износ» топливного насоса.
Но с развитием технологий уплотнений разработчики снова смогли заняться бензиновыми системами с прямым впрыском топлива. Система непосредственного впрыска может обеспечивать несколько видов смесеобразования: послойное, однородное (гомогенное), и стехиометрическое. Послойное смесеообразование актуально при малых и средних оборотах, стехиометрическое и гомогенное – при сверхвысоких оборотах, а также при средних и высоких нагрузках.
Самые популярные решения – с послойным смесеобразованием. Их хорошо знают по названию FSI и TFSI (у Volkswagen и у Ауди). Буква “T” в названии свидетельствуют о наличии турбокомпрессора, то есть двигатель, как именуется в просторечии — “турбирован”.
В цилиндр таких бензиновых систем впрыска поступает небольшое количество топлива. Тщательная организация потока воздуха в цилиндре (его траектория движения, подобная «кувырку) и удачно подобранное время впрыска топлива в цилиндр создают все условия, чтобы это небольшое количество топлива было подано к электродам свечи зажигания, и произошло воспламенение этой порции горючей смеси.
Почему на эту бензиновую систему впрыска не переходят повсеместно. К сожалению, актуальна такая проблема, как «турбоямы» при резком нажатии на педаль газа.
Этот недостаток полностью устранен при наличии наддувочного агрегата с электроприводом. Такие системы недёшевы. Но оперативно выйти на режим максимальной мощности, избежать «турбоям» при резком нажатии педали на газ с ними – не проблема. Прямой впрыск SC-E актуален, например, для ряда спортивных автомобилей.
Очень высокий интерес – и к битопливным (бинарным) система с газотурбинным наддувом. При работе на бензине можно достичь очень хорошего крутящего момента.
Параметры применяемого топлива прописываются в постоянной памяти. Если нужно заменить бензин на альтернативное топливо, изменяется программа смесеобразования. Это очень удобно.
Неисправности и сервисное обслуживание
В процессе эксплуатации транспортного средства топливная система автомобиля испытывает нагрузки, приводящие к ее нестабильному функционированию или выходу из строя. Наиболее распространенными считаются следующие неисправности.
Недостаточное поступление (или отсутствие поступления) горючего в цилиндры двигателя
Некачественное топливо, длительный срок службы, воздействие окружающей среды приводят к загрязнению и засорению топливопроводов, бака, фильтров (воздушного и топливного) и технологических отверстий устройства приготовления горючей смеси, а также поломке топливного насоса. Система потребует ремонта, который будет заключаться в своевременной замене фильтрующих элементов, периодической (раз в два-три года) прочистке топливного бака, карбюратора или форсунок инжектора и замене или ремонте насоса.
Потеря мощности ДВС
Неисправность топливной системы в данном случае определяется нарушением регулировки качества и количества горючей смеси, поступающей в цилиндры. Ликвидация неисправности связана с необходимостью проведения диагностики устройства приготовления горючей смеси.
Утечка горючего
Утечка горючего – явление весьма опасное и категорически не допустимое. Данная неисправность включена в «Перечень неисправностей…», с которыми запрещается движение автомобиля. Причины проблем кроются в потере герметичности узлами и агрегатами топливной системы. Ликвидация неисправности заключается либо в замене поврежденных элементов системы, либо в подтягивании креплений топливопроводов.
Таким образом, система питания является важным элементом ДВС современного автомобиля и отвечает за своевременную и бесперебойную подачу топлива к силовому агрегату.
Мне нравится3Не нравится
Что еще стоит почитать
Устройство генератора ваз 2109
Устройство ходовой части ваз 2109
Устройство впускного коллектора
Топливный насос
Топливный насос
Для принудительной подачи топлива к карбюратору служит топливный насос. На двигателях автомобилей ЗИЛ-431410 топливный насос приводится в действие от эксцентрика распределительного вала через штангу, на карбюраторных двигателях автомобилей ГАЗ-3110 «Волга», ГАЗ-3307 и ИЖ-2126 «Ода» — непосредственно от эксцентрика, на двигателях ВАЗ — эксцентриком вала привода смазочного насоса и распределителя зажигания. Наибольшее распространение получили мембранные насосы,
отличающиеся хорошей работоспособностью.
Насос Б-10 карбюраторных двигателей автомобилей ЗИЛ (рис. 5, а)
состоит из трех основных частей: корпуса
2,
клапанной головки 7 и крышки
10.
В корпусе насоса установлены коромысло 17, нагнетательная пружина
4
ивалик
14
рычага
1
механизма ручной подкачки топлива. В клапанной головке 7 встроены три выпускных клапана
13
и три впускных клапана
8,
над которыми расположен сетчатый фильтр
9.
Крышка
10
имеет перегородку
11,
разделяющую впускную А и нагнетательную Б полости насоса. Между клапанной головкой 7 и корпусом
2
зажата многослойная лакотканевая мембрана
6,
закрепленная на штоке
5,
нижний конец которого через шайбу соединен с внутренним вильчатым плечом коромысла 17, а его наружное плечо пружиной 15 постоянно прижимается к штанге
18
привода насоса.
Режимы работы системы питания
В зависимости от целей и дорожных условий водитель может применять различные режимы движения. Им соответствуют и определенные режимы работы системы питания, каждому из которых присуща топливно-воздушная смесь особого качества.
- Состав смеси будет богатым при запуске холодного двигателя. При этом потребление воздуха минимально. В таком режиме категорически исключается возможность движения. В противном случае это приведет к повышенному потреблению горючего и износу деталей силового агрегата.
- Состав смеси будет обогащенным при использовании режима «холостого хода», который применяется при движении «накатом» или работе заведенного двигателя в прогретом состоянии.
- Состав смеси будет обедненным при движении с частичными нагрузками (например, по равнинной дороге со средней скоростью на повышенной передаче).
- Состав смеси будет обогащенным в режиме полных нагрузок при движении автомобиля на высокой скорости.
- Состав смеси будет обогащенным, приближенным к богатому, при движении в условиях резкого ускорения (например, при обгоне).
Выбор условий работы системы питания, таким образом, должен быть оправдан необходимостью движения в определенном режиме.
Схема, устройство и принцип работы для дизельного двигателя
Схема топливной системы common rail
Системы подачи дизельного топлива имеют свои особенности. Различают три типа конструкций:
- Сommon rail (или аккумуляторная);
- С насос-форсунками;
- Разделенные.
Common rail
Наиболее популярная топливная система для дизелей – аккумуляторная (или common rail). Она соответствует более высоким экологическим стандартам. Это обеспечивается благодаря независимости процессов впрыскивания дизеля от режимов работы двигателя.
Конструктивно система питания дизеля common rail имеет два основных контура:
- Участок низкого давления – состоит из топливного бака, насоса низкого давления, трубопроводов и фильтра.
- Участок высокого давления – состоит из топливного насоса высокого давления (ТНВД), трубопровода, рампы (аккумулятора) и форсунок.
Принцип работы топливной системы дизеля представляет собой следующую последовательность:
- Насос низкого давления нагнетает дизель из топливного бака в трубопровод.
- Проходя по трубопроводу через фильтры грубой и тонкой очистки дизель подается в насос высокого давления.
- ТНВД подает топливо в форсунки, с помощью которых происходит впрыск в цилиндры.
- Одновременно с впрыском топлива происходит подача воздуха.
Разделенная и насос-форсунка
Насос-форсунка
Разделенная топливная система состоит из топливного бака, трубопроводов, ТНВД и форсунок. При этом насос и форсунки соединены длинными трубопроводами, рассчитанными на высокое давление. Разделенная схема активно применяется в отечественном автомобилестроении, поскольку отличается низкой стоимостью и простотой конструкции.
В свою очередь, насос-форсунка – устройство, одновременно создающее нужный уровень давления и производящие впрыск топлива. Она располагается в головке блока цилиндров и приводится в действие кулачковым механизмом. Прямая и обратная магистрали при этом реализованы как каналы, находящиеся непосредственно в головке блока.
Рабочее давление при такой схеме составляет до 2 200 бар.
Этот способ имеет важный недостаток – он характеризуется зависимостью давления от режима работы двигателя.
Инжектор
Инжекторный двигатель является современной конструкцией ДВС. Она значительно превышает по всем показателям карбюраторные системы питания бензинового двигателя. Инжектор является устройством, которое обеспечивает впрыск топлива в мотор. Такая конструкция позволяет обеспечить высокую мощность двигателя. При этом токсичность отработанных газов значительно снижается.
Инжекторные двигатели отличаются стабильностью работы. Автомобиль при разгоне демонстрирует улучшенную динамику. При этом количество бензина, которое требуется транспортному средству для передвижения, будет значительно ниже, чем у карбюраторной системы питания.
Топливо при наличии инжекторной системы сгорает более качественно и полноценно. При этом система управления процессами полностью автоматизирована. Вручную не потребуется производить настройки агрегата. Инжектор и карбюратор значительно отличаются конструкцией и принципом работы.
Инжекторная система питания бензинового двигателя имеет в своем составе специальные форсунки. Они под давлением впрыскивают бензин. Затем он смешивается с воздухом. Такая система позволяет сэкономить расход топлива, увеличить мощность мотора. Она увеличивается до 15%, если сравнивать с карбюраторными типами ДВС.
Насос инжекторного мотора является не механическим, как это было в карбюраторных конструкциях, а электрическим. Он обеспечивает требуемое давление при впрыске бензина. При этом система подает топливо в нужный цилиндр в определенное время. Весь процесс контролирует бортовой компьютер. При помощи датчиков он оценивает количество и температуру воздуха, двигателя и прочие показатели. После проведения анализа собранной информации, компьютер принимает решение о впрыске топлива.
Линия возврата топлива (“обратка”)
Топливные системы
Как правило, топливный насос имеет постоянную производительность, то есть закачивает топливо из бака в рампу под постоянным давлением. Двигатель же работает на разных режимах, потребляя разное количество топлива, в зависимости от его нагрузки. Таким образом, возникает необходимость контролировать давление и количество топлива в топливной рампе.
Этим занимается регулятор давления топлива, который сливает излишки топлива обратно в бак через линию возврата топлива, так называемую “обратку”. В настоящий момент существует два вида топливных систем, отличающихся наличием или отсутствием линии возврата топлива (обратной магистрали).
- Система подачи топлива с линией возврата. Топливо, которое не было впрыснуто форсункой, является избыточным и оно возвращается обратно в бак через регулятор, который расположен на топливной рампе, и линию возврата. Таким образом в топливном коллекторе поддерживается постоянное давление.
- Топливная система без линии возврата. Регулятор давления топлива в таких системах обычно устанавливается в модуле погружного топливного насоса. Избыточное топливо, подаваемое насосом, возвращается обратно в бак через короткую линию возврата. При этом в топливную рампу подается только то количество топлива, которое впрыскивается форсунками. Данная система имеет следующие преимущества – меньшая стоимость и меньший подогрев топлива в баке.
Источники
- https://autodromo.ru/articles/toplivnaya-sistema-avtomobilya-sistema-podachi-topliva-ustroystvo-naznachenie-princip
- https://ZnanieAvto.ru/toplivo/sistema-pitaniya-dvigatelya-avtomobilya.html
- https://topdetal.ru/stati/kakie_byvayut_vidy_sistem_pitaniya_dvigatelya/
- https://TechAutoPort.ru/dvigatel/toplivnaya-sistema/toplivnye-sistemy-benzinovyh-i-dizelnyh-dvigateley.html
[свернуть]
Какой впрыск лучше?
Очень часто спорят: какой впрыск лучше. Дешевле всего обойдутся решения, ориентированные на распределённый впрыск. Подкупает и то, что они не требовательны к качеству топлива.
Если вам важно, чтобы была высокая топливная эффективность при минимальных значениях вредных выбросов, однозначно стоит выбирать непосредственный впрыск. Да, эти решения дороже. Но лучше заплатить больше единожды, чем постоянно “съедать” лишнее топливо.
Кстати, дороговизна решения связана, главным образом, с тем, что производителям пришлось внести кардинальные изменения в конструкцию головок цилиндров, однако в ремонте эти двигатели значительно дороже простых и надёжных двигателей с распределённым предкамерным впрыском топлива.
Не просто изучить топливные системы, а попрактиковаться работать в поиске различных неисправностей в них вам поможет специализированный тренажёр на платформе ELECTUDE. Отличное подспорье для автомобильных механиков и диагностов.